逆波兰计算器

1)输入一个逆波兰表达式(后缀表达式),使用栈(Stack), 计算其结果 
2) 支持小括号和多位数整数,因为这里我们主要讲的是数据结构,因此计算器进行简化,只支持对整数的计算。
 
 
思路分析:
例如: (3+4)×5-6 对应的后缀表达式就是 3 4 + 5 × 6 - , 针对后缀表达式求值步骤如下: 
1.从左至右扫描,将 3 和 4 压入堆栈; 
2.遇到+运算符,因此弹出 4 和 3(
4 为栈顶元素,3 为次顶元素),计算出 3+4 的值,得 7,再将 7 入栈; 
3.将 5 入栈; 
4.接下来是×运算符,因此弹出 5 和 7,计算出 7×5=35,将 35 入栈; 
5.将 6 入栈; 
6.最后是-运算符,计算出 35-6 的值,即 29,由此得出最终结果
 
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;

public class PolandNotation {

    public static void main(String[] args) {
        
        
        //完成将一个中缀表达式转成后缀表达式的功能
        //说明
        //1. 1+((2+3)×4)-5 => 转成  1 2 3 + 4 × + 5 –
        //2. 因为直接对str 进行操作,不方便,因此 先将  "1+((2+3)×4)-5" =》 中缀的表达式对应的List
        //   即 "1+((2+3)×4)-5" => ArrayList [1,+,(,(,2,+,3,),*,4,),-,5]
        //3. 将得到的中缀表达式对应的List => 后缀表达式对应的List
        //   即 ArrayList [1,+,(,(,2,+,3,),*,4,),-,5]  =》 ArrayList [1,2,3,+,4,*,+,5,–]
        
        String expression = "1+((2+3)*4)-5";//注意表达式 
        List<String> infixExpressionList = toInfixExpressionList(expression);
        System.out.println("中缀表达式对应的List=" + infixExpressionList); // ArrayList [1,+,(,(,2,+,3,),*,4,),-,5]
        List<String> suffixExpreesionList = parseSuffixExpreesionList(infixExpressionList);
        System.out.println("后缀表达式对应的List" + suffixExpreesionList); //ArrayList [1,2,3,+,4,*,+,5,–] 
        
        System.out.printf("expression=%d", calculate(suffixExpreesionList)); // ?
        
        
        
        /*
        
        //先定义给逆波兰表达式
        //(30+4)×5-6  => 30 4 + 5 × 6 - => 164
        // 4 * 5 - 8 + 60 + 8 / 2 => 4 5 * 8 - 60 + 8 2 / + 
        //测试 
        //说明为了方便,逆波兰表达式 的数字和符号使用空格隔开
        //String suffixExpression = "30 4 + 5 * 6 -";
        String suffixExpression = "4 5 * 8 - 60 + 8 2 / +"; // 76
        //思路
        //1. 先将 "3 4 + 5 × 6 - " => 放到ArrayList中
        //2. 将 ArrayList 传递给一个方法,遍历 ArrayList 配合栈 完成计算
        
        List<String> list = getListString(suffixExpression);
        System.out.println("rpnList=" + list);
        int res = calculate(list);
        System.out.println("计算的结果是=" + res);
        
        */
    }
    
    
    
    //即 ArrayList [1,+,(,(,2,+,3,),*,4,),-,5]  =》 ArrayList [1,2,3,+,4,*,+,5,–]
    //方法:将得到的中缀表达式对应的List => 后缀表达式对应的List
    public static List<String> parseSuffixExpreesionList(List<String> ls) {
        //定义两个栈
        Stack<String> s1 = new Stack<String>(); // 符号栈
        //说明:因为s2 这个栈,在整个转换过程中,没有pop操作,而且后面我们还需要逆序输出
        //因此比较麻烦,这里我们就不用 Stack<String> 直接使用 List<String> s2
        //Stack<String> s2 = new Stack<String>(); // 储存中间结果的栈s2
        List<String> s2 = new ArrayList<String>(); // 储存中间结果的Lists2
        
        //遍历ls
        for(String item: ls) {
            //如果是一个数,加入s2
            if(item.matches("\\d+")) {
                s2.add(item);
            } else if (item.equals("(")) {
                s1.push(item);
            } else if (item.equals(")")) {
                //如果是右括号“)”,则依次弹出s1栈顶的运算符,并压入s2,直到遇到左括号为止,此时将这一对括号丢弃
                while(!s1.peek().equals("(")) {
                    s2.add(s1.pop());
                }
                s1.pop();//!!! 将 ( 弹出 s1栈, 消除小括号
            } else {
                //当item的优先级小于等于s1栈顶运算符, 将s1栈顶的运算符弹出并加入到s2中,再次转到(4.1)与s1中新的栈顶运算符相比较
                //问题:我们缺少一个比较优先级高低的方法
                while(s1.size() != 0 && Operation.getValue(s1.peek()) >= Operation.getValue(item) ) {
                    s2.add(s1.pop());
                }
                //还需要将item压入栈
                s1.push(item);
            }
        }
        
        //将s1中剩余的运算符依次弹出并加入s2
        while(s1.size() != 0) {
            s2.add(s1.pop());
        }

        return s2; //注意因为是存放到List, 因此按顺序输出就是对应的后缀表达式对应的List
        
    }
    
    //方法:将 中缀表达式转成对应的List
    //  s="1+((2+3)×4)-5";
    public static List<String> toInfixExpressionList(String s) {
        //定义一个List,存放中缀表达式 对应的内容
        List<String> ls = new ArrayList<String>();
        int i = 0; //这时是一个指针,用于遍历 中缀表达式字符串
        String str; // 对多位数的拼接
        char c; // 每遍历到一个字符,就放入到c
        do {
            //如果c是一个非数字,我需要加入到ls
            if((c=s.charAt(i)) < 48 ||  (c=s.charAt(i)) > 57) {
                ls.add("" + c);
                i++; //i需要后移
            } else { //如果是一个数,需要考虑多位数
                str = ""; //先将str 置成"" '0'[48]->'9'[57]
                while(i < s.length() && (c=s.charAt(i)) >= 48 && (c=s.charAt(i)) <= 57) {
                    str += c;//拼接
                    i++;
                }
                ls.add(str);
            }
        }while(i < s.length());
        return ls;//返回
    }
    
    //将一个逆波兰表达式, 依次将数据和运算符 放入到 ArrayList中
    public static List<String> getListString(String suffixExpression) {
        //将 suffixExpression 分割
        String[] split = suffixExpression.split(" ");
        List<String> list = new ArrayList<String>();
        for(String ele: split) {
            list.add(ele);
        }
        return list;
        
    }
    
    //完成对逆波兰表达式的运算
    /*
     * 1)从左至右扫描,将3和4压入堆栈;
        2)遇到+运算符,因此弹出4和3(4为栈顶元素,3为次顶元素),计算出3+4的值,得7,再将7入栈;
        3)将5入栈;
        4)接下来是×运算符,因此弹出5和7,计算出7×5=35,将35入栈;
        5)将6入栈;
        6)最后是-运算符,计算出35-6的值,即29,由此得出最终结果
     */
    
    public static int calculate(List<String> ls) {
        // 创建给栈, 只需要一个栈即可
        Stack<String> stack = new Stack<String>();
        // 遍历 ls
        for (String item : ls) {
            // 这里使用正则表达式来取出数
            if (item.matches("\\d+")) { // 匹配的是多位数
                // 入栈
                stack.push(item);
            } else {
                // pop出两个数,并运算, 再入栈
                int num2 = Integer.parseInt(stack.pop());
                int num1 = Integer.parseInt(stack.pop());
                int res = 0;
                if (item.equals("+")) {
                    res = num1 + num2;
                } else if (item.equals("-")) {
                    res = num1 - num2;
                } else if (item.equals("*")) {
                    res = num1 * num2;
                } else if (item.equals("/")) {
                    res = num1 / num2;
                } else {
                    throw new RuntimeException("运算符有误");
                }
                //把res 入栈
                stack.push("" + res);
            }
            
        }
        //最后留在stack中的数据是运算结果
        return Integer.parseInt(stack.pop());
    }

}

//编写一个类 Operation 可以返回一个运算符 对应的优先级
class Operation {
    private static int ADD = 1;
    private static int SUB = 1;
    private static int MUL = 2;
    private static int DIV = 2;
    
    //写一个方法,返回对应的优先级数字
    public static int getValue(String operation) {
        int result = 0;
        switch (operation) {
        case "+":
            result = ADD;
            break;
        case "-":
            result = SUB;
            break;
        case "*":
            result = MUL;
            break;
        case "/":
            result = DIV;
            break;
        default:
            System.out.println("不存在该运算符" + operation);
            break;
        }
        return result;
    }
    
}
View Code

 

posted @ 2022-04-08 23:01  大雄的脑袋  阅读(70)  评论(0编辑  收藏  举报