HashMap代码解析

 

hashmap (jdk 1.7)使用 “数组-链表” 方式进行存储,图形化表示如下:

即,前面是一个数组,后面跟一个链表,那么数据结构这个对应到HashMap的代码里面是什么样子的呢?

在HashMap中定义了一个类型为Entry<K,V>的数组table,上图就是显示了这个table。

1
2
3
4
/**
 * The table, resized as necessary. Length MUST Always be a power of two.
 */
transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE;

类型Entry<K,V>的定义如下:

1
2
3
4
5
6
7
static class Entry<K,V> implements Map.Entry<K,V> {
        final K key;
        V value;
        Entry<K,V> next;
        int hash;
        // 省略构造/get/set等函数
}

由Entry<K,V>的定义可知,上图每个节点中其实存了4个变量:

    key表示键,即存入map的键值

    value表示值,即存入map的值

    next表示下一个Entry节点

    hash表示key的哈希值。

那么上图准确表示应该是:

对于HashMap,最常用的莫过于直接使用默认构造函数创建一个Map对象了

1
Map<int, String> map = new HashMap<>();

这里HashMap调用了

1
2
3
4
5
6
7
/**
 * Constructs an empty <tt>HashMap</tt> with the default initial capacity
 * (16) and the default load factor (0.75).
 */
public HashMap() {
    this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
}

其中,DEFAULT_INITIAL_CAPACITY是

1
2
3
4
/**
 * The default initial capacity - MUST be a power of two.
 */
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

DEFAULT_LOAD_FACTOR是

1
2
3
4
/**
 * The load factor used when none specified in constructor.
 */
static final float DEFAULT_LOAD_FACTOR = 0.75f;

 this()调用的是

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/**
 * Constructs an empty <tt>HashMap</tt> with the specified initial
 * capacity and load factor.
 *
 * @param  initialCapacity the initial capacity
 * @param  loadFactor      the load factor
 * @throws IllegalArgumentException if the initial capacity is negative
 *         or the load factor is nonpositive
 */
public HashMap(int initialCapacity, float loadFactor) {
    if (initialCapacity < 0)
        throw new IllegalArgumentException("Illegal initial capacity: " +
                                           initialCapacity);
    if (initialCapacity > MAXIMUM_CAPACITY)
        initialCapacity = MAXIMUM_CAPACITY;
    if (loadFactor <= 0 || Float.isNaN(loadFactor))
        throw new IllegalArgumentException("Illegal load factor: " +
                                           loadFactor);
 
    this.loadFactor = loadFactor;
    threshold = initialCapacity;
    init();
}

了解了基本结构之后,看一下HashMap的put()和get()方法是如何实现的。

 

首先,看put()方法,再了解put()方法之前,先了解几个put()方法会调用的几个辅助方法:

1. inflateTable(),给表充气 or 让表膨胀?原来table对象是空的,所以需要将table对象初始化

1
2
3
4
5
6
7
8
9
10
11
12
13
14
/**
 * Inflates the table.
 */
private void inflateTable(int toSize) {
    // Find a power of 2 >= toSize
    // capacity 表示HashpMap的容量,必须是2的倍数
    int capacity = roundUpToPowerOf2(toSize);
    // threshold 表示需要resize的阈值
    threshold = (int) Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);
    // 初始化大小为capacity的table对象
    table = new Entry[capacity];
    // 初始化 hashSeed
    initHashSeedAsNeeded(capacity);
}

   

2. putForNullKey()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
/**
 * Offloaded version of put for null keys
 */
private V putForNullKey(V value) {
    // 遍历table[0],如果已经有key为null的元素,直接返回对应的value
    for (Entry<K,V> e = table[0]; e != null; e = e.next) {
        if (e.key == null) {
            V oldValue = e.value;
            e.value = value;
            e.recordAccess(this);
            return oldValue;
        }
    }
    // 如果没有key为null的元素,
    // 将HashMap的修改次数+1
    modCount++;
    // 将key为null的元素添加到HashMap中
    addEntry(0, null, value, 0);
    return null;
}

 疑问:key为null的元素的hash值一定为0吗?

3. hash(),求对象的hash值

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/**
 * Retrieve object hash code and applies a supplemental hash function to the
 * result hash, which defends against poor quality hash functions.  This is
 * critical because HashMap uses power-of-two length hash tables, that
 * otherwise encounter collisions for hashCodes that do not differ
 * in lower bits. Note: Null keys always map to hash 0, thus index 0.
 */
final int hash(Object k) {
    int h = hashSeed;
    if (0 != h && k instanceof String) {
        return sun.misc.Hashing.stringHash32((String) k);
    }
 
    h ^= k.hashCode();
 
    // This function ensures that hashCodes that differ only by
    // constant multiples at each bit position have a bounded
    // number of collisions (approximately 8 at default load factor).
    h ^= (h >>> 20) ^ (h >>> 12);
    return h ^ (h >>> 7) ^ (h >>> 4);
}

    

4. indexFor(),根据对象的hash值以及HashMap table的长度,寻找该对象的索引位置

1
2
3
4
5
6
7
/**
 * Returns index for hash code h.
 */
static int indexFor(int h, int length) {
    // assert Integer.bitCount(length) == 1 : "length must be a non-zero power of 2";
    return h & (length-1);
}

这里没有使用hash值h对长度length取余,而是使用的位运算?其实两者结果是一样的,h % length == h & (length -1)

 

5. addEntry()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/**
     * Adds a new entry with the specified key, value and hash code to
     * the specified bucket.  It is the responsibility of this
     * method to resize the table if appropriate.
     *
     * Subclass overrides this to alter the behavior of put method.
     */
    void addEntry(int hash, K key, V value, int bucketIndex) {
        // size是HashMap中元素的个数
        // threshhold = capacity * load factor,表示需要扩容resize的阈值
        // 如果size > threshold,并且table在当前索引处有元素,不为null,则需要扩容HashMap,并从新计算索引值
        if ((size >= threshold) && (null != table[bucketIndex])) {
            resize(2 * table.length);
            hash = (null != key) ? hash(key) : 0;
            bucketIndex = indexFor(hash, table.length);
        }
        // 将元素加入到HashMap
        createEntry(hash, key, value, bucketIndex);
    }

   

6. createEntry()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
/**
 * Like addEntry except that this version is used when creating entries
 * as part of Map construction or "pseudo-construction" (cloning,
 * deserialization).  This version needn't worry about resizing the table.
 *
 * Subclass overrides this to alter the behavior of HashMap(Map),
 * clone, and readObject.
 */
void createEntry(int hash, K key, V value, int bucketIndex) {
    // 这里是获取某个链表的第一个节点e,
    // 因为每次插入都是往链表的头部插入的,因此e就作为了新节点的next值
    Entry<K,V> e = table[bucketIndex];
    // e作为新节点的next值
    table[bucketIndex] = new Entry<>(hash, key, value, e);
    // HashMap的size加1
    size++;
}

    

7. resize()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
/**
 * Rehashes the contents of this map into a new array with a
 * larger capacity.  This method is called automatically when the
 * number of keys in this map reaches its threshold.
 *
 * If current capacity is MAXIMUM_CAPACITY, this method does not
 * resize the map, but sets threshold to Integer.MAX_VALUE.
 * This has the effect of preventing future calls.
 *
 * @param newCapacity the new capacity, MUST be a power of two;
 *        must be greater than current capacity unless current
 *        capacity is MAXIMUM_CAPACITY (in which case value
 *        is irrelevant).
 */
void resize(int newCapacity) {
    Entry[] oldTable = table;
    int oldCapacity = oldTable.length;
    // 如果HashMap中table的长度(这里是指table数组的长度,不是链表的长度)
    // 已经达到了MAXIMUN_CAPACITY = 1 << 30,直接将阈值threshold设置为Integer的最大值。
    // 不在扩容HashMap
    if (oldCapacity == MAXIMUM_CAPACITY) {
        threshold = Integer.MAX_VALUE;
        return;
    }
 // newCapacity是原table数组长度的2倍
    Entry[] newTable = new Entry[newCapacity];
    // 将原table中的值迁移到扩容后的newTable中
    transfer(newTable, initHashSeedAsNeeded(newCapacity));
    // 更新table和阈值threshold
    table = newTable;
    threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1);
}

    

8. transfer(), 将原HashMap中的元素迁移到扩容后的HashMap中

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/**
 * Transfers all entries from current table to newTable.
 */
void transfer(Entry[] newTable, boolean rehash) {
    int newCapacity = newTable.length;
    // 遍历table数组
    for (Entry<K,V> e : table) {
        // 这里e是table数组某个链表的第一个元素,后面e会依次指向链表中所有的元素
        // 如果table数组的元素不为null
        while(null != e) {
            Entry<K,V> next = e.next;
            if (rehash) {
                // 如果e.key是null,hash值是0
                e.hash = null == e.key ? 0 : hash(e.key);
            }
            // 获取元素e在新table中的索引值
            int i = indexFor(e.hash, newCapacity);
            // 将e的next指向新table的第一个元素(这里还是要记住,插入链表是从头部插入的)
            // newTable[i]是链表的第一个元素
            e.next = newTable[i];
            // 将e赋值给链表的第一个元素newTable[i],这样e就取代了链表原来的第一个元素,作为链表新的第一个元素,引领链表!
            newTable[i] = e;
            e = next;
        }
    }
}

  

 

了解了上述n个方法之后,是时候看一下HashMap的put()方法的真面目了!

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
/**
 * Associates the specified value with the specified key in this map.
 * If the map previously contained a mapping for the key, the old
 * value is replaced.
 *
 * @param key key with which the specified value is to be associated
 * @param value value to be associated with the specified key
 * @return the previous value associated with <tt>key</tt>, or
 *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
 *         (A <tt>null</tt> return can also indicate that the map
 *         previously associated <tt>null</tt> with <tt>key</tt>.)
 */
public V put(K key, V value) {
    // 如果table是空的,需要初始化table
    if (table == EMPTY_TABLE) {
        inflateTable(threshold);
    }
    // 如果key是null,调用putForNullKey方法插入元素
    if (key == null)
        return putForNullKey(value);
    // 求key的hash值
    int hash = hash(key);
    // 根据key的hash值和table的长度求元素在table中的索引
    int i = indexFor(hash, table.length);
    // 遍历table[i]引领的链表
    // 如果已经存在了相同的key,则更新value并返回old value,否则插入新元素
    for (Entry<K,V> e = table[i]; e != null; e = e.next) {
        Object k;
        // key已经存在,更新value,返回old value
        if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
            V oldValue = e.value;
            e.value = value;
            e.recordAccess(this);
            return oldValue;
        }
    }
    // HashMap的修改次数加1,modCount是modified times
    modCount++;
    // 插入新元素
    addEntry(hash, key, value, i);
    // 如果key没有重复,返回值是null
    return null;
}

  

   

其次,看一下get()方法,再了解get()方法之前,同样先了解几个get()方法会调用的几个辅助方法:

1. getForNullKey()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
/**
 * Offloaded version of get() to look up null keys.  Null keys map
 * to index 0.  This null case is split out into separate methods
 * for the sake of performance in the two most commonly used
 * operations (get and put), but incorporated with conditionals in
 * others.
 */
private V getForNullKey() {
    if (size == 0) {
        return null;
    }
    for (Entry<K,V> e = table[0]; e != null; e = e.next) {
        if (e.key == null)
            return e.value;
    }
    return null;
}

  

2. getEntry()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/**
 * Returns the entry associated with the specified key in the
 * HashMap.  Returns null if the HashMap contains no mapping
 * for the key.
 */
final Entry<K,V> getEntry(Object key) {
    if (size == 0) {
        return null;
    }
 
    int hash = (key == null) ? 0 : hash(key);
    for (Entry<K,V> e = table[indexFor(hash, table.length)]; e != null; e = e.next) {
        Object k;
        if (e.hash == hash &&
            ((k = e.key) == key || (key != null && key.equals(k))))
            return e;
    }
    return null;
}

了解了上述2个方法之后,get()方法就比较简单了

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
/**
 * Returns the value to which the specified key is mapped,
 * or {@code null} if this map contains no mapping for the key.
 *
 * <p>More formally, if this map contains a mapping from a key
 * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
 * key.equals(k))}, then this method returns {@code v}; otherwise
 * it returns {@code null}.  (There can be at most one such mapping.)
 *
 * <p>A return value of {@code null} does not <i>necessarily</i>
 * indicate that the map contains no mapping for the key; it's also
 * possible that the map explicitly maps the key to {@code null}.
 * The {@link #containsKey containsKey} operation may be used to
 * distinguish these two cases.
 *
 * @see #put(Object, Object)
 */
public V get(Object key) {
    if (key == null)
        return getForNullKey();
    Entry<K,V> entry = getEntry(key);
 
    return null == entry ? null : entry.getValue();
}

  

最后,再学习一下remove()方法的实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
/**
 * Removes the mapping for the specified key from this map if present.
 *
 * @param  key key whose mapping is to be removed from the map
 * @return the previous value associated with <tt>key</tt>, or
 *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
 *         (A <tt>null</tt> return can also indicate that the map
 *         previously associated <tt>null</tt> with <tt>key</tt>.)
 */
public V remove(Object key) {
    Entry<K,V> e = removeEntryForKey(key);
    return (e == null ? null : e.value);
}
 
/**
 * Removes and returns the entry associated with the specified key
 * in the HashMap.  Returns null if the HashMap contains no mapping
 * for this key.
 */
final Entry<K,V> removeEntryForKey(Object key) {
    if (size == 0) {
        return null;
    }
    // 找到hash值
    int hash = (key == null) ? 0 : hash(key);
    // 求索引位置
    int i = indexFor(hash, table.length);
    Entry<K,V> prev = table[i];
    Entry<K,V> e = prev;
 
    while (e != null) {
        Entry<K,V> next = e.next;
        Object k;
        // 寻找到key的位置,是当前的e
        if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) {
            // HashMap的修改次数加1
            modCount++;
            // HashMap的size减1
            size--;
            // 如果是链表的第一个元素,next是null,直接将table[i]设置为null
            if (prev == e)
                table[i] = next;
            else
                // prev的next是e,next是e.next,即[prev]-> [e] -> [next]
                // prev.next = next,即[prev] -> [next],直接将元素e移除掉了
                prev.next = next;
            e.recordRemoval(this);
            return e;
        }
        prev = e;
        e = next;
    }
 
    return e;
}

  

  

 

posted @   Entropy_lxl  阅读(292)  评论(0编辑  收藏  举报
编辑推荐:
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
阅读排行:
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 地球OL攻略 —— 某应届生求职总结
· 提示词工程——AI应用必不可少的技术
· Open-Sora 2.0 重磅开源!
· 字符编码:从基础到乱码解决
点击右上角即可分享
微信分享提示