sqprk集群上使用自定义udf函数,出现无法序列化的错误
在spark集群上,将读取到的csv文件生成的datafream,需要对其中一列进行转化,内置的udf函数已经不能满足需求
所以需要自定义一个udf,但是在使用的时候报错,如下
Exception in thread "main" org.apache.spark.SparkException: Task not serializable at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:403) at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:393) at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:162) at org.apache.spark.SparkContext.clean(SparkContext.scala:2326) at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndex$1.apply(RDD.scala:850) at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndex$1.apply(RDD.scala:849) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112) at org.apache.spark.rdd.RDD.withScope(RDD.scala:363) at org.apache.spark.rdd.RDD.mapPartitionsWithIndex(RDD.scala:849) at org.apache.spark.sql.execution.WholeStageCodegenExec.doExecute(WholeStageCodegenExec.scala:630) at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:131) at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:127) at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155)
Caused by: java.io.NotSerializableException: org.apache.spark.SparkContext Serialization stack: - object not serializable (class: org.apache.spark.SparkContext, value: org.apache.spark.SparkContext@7334dcbe) - field (class: algorithm.config.Base, name: sc, type: class org.apache.spark.SparkContext) - object (class algorithm.config.Base, algorithm.config.Base@4a6c33a0) - field (class: algorithm.config.Base$$anonfun$save_data_parquet$1, name: $outer, type: class algorithm.config.Base) - object (class algorithm.config.Base$$anonfun$save_data_parquet$1, <function1>) - field (class: algorithm.config.Base$$anonfun$save_data_parquet$1$$anonfun$2, name: $outer, type: class algorithm.config.Base$$anonfun$save_data_parquet$1) - object (class algorithm.config.Base$$anonfun$save_data_parquet$1$$anonfun$2, <function1>) - element of array (index: 25) - array (class [Ljava.lang.Object;, size 26)
百度了半天,最后总结如下:
当你执行各种转换(map,flatMap,filter等等)的时候,会有以下转换: 1、在driver节点上序列化, 2、上传到合适的集群中的节点, 3、在节点上执行反序列化, 4、最后在节点上执行。 自定义一个udf,并使用这个udf,那么Spark知道不能序列化这个方法,于是试图序列化整个类,因此才能使得这个方法能运行在其他JVM之上,正因为本例没有序列化,所以才出现异常。
解决方法:
1. 在val sc = spark.sparkContext 上面加 @transient
2. 类继承序列化类
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列:基于图像分类模型对图像进行分类
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 25岁的心里话
· 闲置电脑爆改个人服务器(超详细) #公网映射 #Vmware虚拟网络编辑器
· 零经验选手,Compose 一天开发一款小游戏!
· 因为Apifox不支持离线,我果断选择了Apipost!
· 通过 API 将Deepseek响应流式内容输出到前端