微积分笔记
前置例题
1.
S1=1+2+4+8+16+···
2S1= 2+4+8+16+···
2S1-S1=-1
S1=-1
2.
x=0.9999···
10x=9.9999···
9x=9
x=1
函数的导数和微分
函数的不定积分和定积分
知识点1 平均变化率
一般地,已知函数\(y=f\left( x\right)\),\(x_{0},x_{1}\)是定义域内不同的两点,记\(\Delta x=x_{1}-x_{0}\),\(\Delta y=y_{1}-y_{0}=f\left( x_{1}\right) -f\left( x_{0}\right) =f\left( x_{0}+\Delta x\right) -f\left( x_{0}\right)\)。
则当\(\Delta x\neq 0\)时,商\(\dfrac {\Delta y}{\Delta x}=\dfrac {f\left( x_{0}+\Delta x\right) -f\left( x_{0}\right) }{\Delta x}\)称作函数\(y=f\left( x\right)\)在区间\(\left[ x_{0},x_{0}+\Delta x\right]\)或\(\left[ x_{0}+\Delta x,x_{0}\right]\)的平均变化率。
例1
求函数\(y=x^{2}\)在区间\(\left[ x_{0},x_{0}+\Delta x\right]\)的平均变化率。
解:\(\dfrac {\Delta y}{\Delta x}=\dfrac {\left( x_{0}+\Delta x\right) ^{2}-x^{2}_{0}}{\Delta x}=\Delta x+2x_{0}\)
例2
求函数\(y=\dfrac {1}{x}\)在区间\(\left[ x_{0},x_{0}+\Delta x\right]\)的平均变化率。
解:\(\dfrac {\Delta y}{\Delta x}=\dfrac {\dfrac {1}{x_{0}+\Delta x}-\dfrac {1}{x_{0}}}{\Delta x}=-\dfrac {1}{x_{0}\left( x_{0}+\Delta x\right) }\)
知识点2 瞬时变化率
如果\(\Delta x\)趋近于0,平均变化率\(\dfrac {\Delta y}{\Delta x}=\dfrac {f\left( x_{0}+\Delta x\right) -f\left( x_{0}\right) }{\Delta x}\)趋近于常数l,那么称常数l为函数\(y=f\left( x\right)\)在点\(x_{0}\)处的瞬时变化率,记作:
当\(\Delta x\rightarrow 0\)时,\(\dfrac {f\left( x_{0}+\Delta x\right) -f\left( x_{0}\right) }{\Delta x}\rightarrow l\)
也记作$$\lim {\Delta x\rightarrow 0}\dfrac {f\left( x+\Delta x\right) -f\left( x_{0}\right) }{\Delta x}= l$$
知识点3
函数\(y=f\left( x\right)\)在点\(x_{0}\)处的瞬时变化率,通常称为\(f\left( x\right)\)在点\(x_{0}\)处的导数。
记作:\(f'\left( x_{0}\right)\)
即$$\lim {\Delta x\rightarrow 0}\dfrac {f\left( x+\Delta x\right) -f\left( x_{0}\right) }{\Delta x}= f'\left( x_{0}\right)$$
知识点4 导数
如果\(y=f\left( x\right)\)在开区间\(\left( a,b\right)\)内每一点都是可导的,区间\(\left( a,b\right)\)内的每一个值都对应一个确定的导数\(f'\left( x\right)\),称区间\(\left( a,b\right)\)内\(f'\left( x\right)\)可构成一个新的函数,称为\(y=f\left( x\right)\)的导函数。
记作:\(f'\left( x\right)(\)或$ y'\(或\)y'x)$,通称为导数。
例3
火箭竖直向上发射,熄火时速度达到100m/,试问熄火多长时间,火箭的速度为0。
解:
\(h\left( t\right) =100t-\dfrac {1}{2}gt^{2}\)
平均变化率(平均速度):\(\dfrac {h\left( t+\Delta t\right) -h\left( t\right) }{\Delta t}=100-\dfrac {1}{2}g\Delta t-gt\)
瞬时速度:\(\Delta t\rightarrow 0\)时
\(\dfrac {h\left( t+\Delta t\right) -h\left( t\right) }{\Delta t}=100-gt\)
令\(100-gt=0,g=9.8\)
\(t=\dfrac {100}{g}\approx10.2s\)
例4
圆,面积\(S=\pi r^{2}\),周长\(l=2\pi r\)
解:$$S'\left( x\right) =\lim _{\Delta r\rightarrow 0}\dfrac {S\left(r+\Delta r\right) -S\left( r\right) }{\Delta r}$$
知识点5 导数的几何意义
\(A\left( x_{0},f\left( x_{0}\right) \right) , B\left( x_{0}+\Delta x,f\left( x_{0}+\Delta x\right) \right)\)
AB:割线(平均变化率):\(\dfrac {\Delta y}{\Delta x}=\dfrac {f\left( x_{0}+\Delta x\right) -f\left( x_{0}\right) }{\Delta x}\)
切线(瞬时变化率):\(\Delta x\rightarrow 0\),\(\dfrac {\Delta y}{\Delta x}\rightarrow k\)
\(B\rightarrow A\)(转动)
割线\(AB\rightarrow\)切线$ AB’\(
割线斜率\)\rightarrow$切线斜率
函数在一点的切线的斜率就是函数在这点的导数:导数=斜率
例5
求抛物线\(y=x^{2}\)在点\(\left( x_{0},f\left( x_{0}\right) \right)\)切线的斜率。
解:求导数的几何意义
知$$k=f\left( x_{0}\right)$$
求在(0,0)处切线的斜率
例6
求双曲线\(y=\dfrac {1}{x}\)在点
\(\left( 2,\dfrac {1}{2}\right)\)的切线方程
方程\(y-y_{0}=k\left( x-x_{0}\right)\)
\(k=-\dfrac {1}{x^{2}}=-\dfrac {1}{4}\)
\(y=-\dfrac {1}{4}x+1\)
知识点6 导数的运算
(1)常值函数的导数
\(y=f\left( x\right) =c\)(c为常数)
(2)
\(y=x\\ y'=x'=1\)
(3)
\(y=x^{2}\\ y'=\left( x^2\right) '=2x\)
(4)
\(y=x^{3}\\ y'=3x^{2}\)
(5)
\(y=\dfrac {1}{x}\\ y'=-\dfrac {1}{x^{2}}\)
(6)
\(y=\dfrac {1}{\sqrt {x}}\\ y'=\dfrac {1}{2\sqrt {x_{0}}}\)
知识点7 导数公式表
\(y=f\left( x\right) ,y'=f'\left( x\right)\)
$ y=c,y'=0\(
\) y=x^{n}\left( n\in N+\right) ,y'=nx^{n-1}\(
\)y=x^{\alpha }( \alpha \in Q,x>0), y'=\alpha x^{\alpha -1}\(
\)y= a^{x}(a > 0,a\neq 1),y'=a^{x}\ln a\(
\)y=\log a^{x}( a >0,a\neq 1),y'=\dfrac {1}{x\ln a}\(
特别地
\)y=e{x},y'=e\ y=\ln x,y'=\dfrac {1}{x}\ y=\sin x,y'=\cos x\ y=\cos x,y'=-\sin x\(
补充:
\)y=\ln \left| x\right| ,y'=\dfrac {1}{\left| x\right| }\ y=\tan x,y'=\sec ^{2}x=\dfrac {1}{\cos ^{2}x}\(
\)y=\arcsin x,y'=\dfrac {1}{\sqrt {1-x^{2}}}\ y=\arccos x,y'=-\dfrac {1}{\sqrt {1-x^{2}}}\(
\)y=\arctan x,y'=\dfrac {1}{1+x^{2}}\ y=arccotx,y'=-\dfrac {1}{1+x^{2}}\(
证明\)y=\arcsin x,y'=\dfrac {1}{\sqrt {1-x^{2}}}$:
极限:
“\(\dfrac {0}{0}\)”$$\lim _{x\rightarrow 0}\dfrac {\sin x}{x}=1$$
"\(\dfrac {\infty }{\infty }\)"$$\lim _{x\rightarrow 0}\left( 1+\dfrac {1}{x}\right) ^{x}=e$$
或$$\lim _{x\rightarrow 0}\left( 1+x\right) ^{\dfrac {1}{x}}=e$$
例7
求导
\(f\left( x\right) =x^{5}+2x^{4}+x^{3},g\left( x\right) =3^{x}+\ln x,h\left( x\right) =\cos x+\sin x\)
\(\Downarrow\)
\(f'\left( x\right) =5x^{4}+8x^{3}+3x^{2},g'\left( x\right) =3^{x}\ln 3+\dfrac {1}{x}, h'\left( x\right) =-\sin x+\cos x\)
知识点8 导数的四则运算
(1)函数和(或差)的求导法则
\(\left[ f\left( x\right) \pm g\left( x\right) \right]'=f'\left( x\right) \pm g'\left( x\right)\)
(2)函数的积的求导法则
\(\left[ f\left( x\right) \cdot g\left( x\right) \right] '=f'\left( x\right) \cdot g\left( x\right) +f\left( x\right) \cdot g'\left( x\right)\)
(3)导数商的求导法则
\(\left[ \dfrac {f\left( x\right) }{g\left( x\right) }\right] ^{'}=\dfrac {f'\left( x\right) g\left( x\right) -f\left( x\right) g'\left( x\right) }{g^{2}\left( x\right) }\)
证明:
例8
求\(f\left( x\right) =a_{0}x^{n}+a_{1}x^{n-1}+a_{2}x^{n-2}+\ldots +a_{n-1}x+a_{n}\)的导数
解:
\(f\left( x\right) =na_{0}x^{n-1}+(n-1)a_{1}x^{n-2}+\ldots +a_{n}-1\)
例9
\(y=x\cdot \sin x\)
解:
\(y'=x'\sin x+x\cdot \left( \sin x\right) '\\ =\sin x+x\cdot \cos x\)
例10
\(y=\sin 2x\)
解:
\(y=\sin 2x=2\sin x\cos x\\ y'=2(\cos ^{2}x-\sin ^{2}x )\\ =2\cos 2x\)
例11
\(y=\tan x=\dfrac {\sin x}{\cos x}\)
解:
\(y'=\dfrac {\left( \sin x\right) '\cos x-\sin x\left( \cos x\right)' }{\cos ^{2}x}\)
\(=\dfrac {\cos ^{2}x+\sin ^{2}x}{\cos ^{2}x}\\ =\dfrac {1}{\cos ^{2}x}\)
知识点9 利用导数判断函数的单调性
(1)如果(a,b)内\(f'\left( x\right) >0\),函数单调递增
(2)如果(a,b)内\(f'\left( x\right) <0\),函数单调递减
例13
y=x在\(\left( -\infty ,+\infty \right)\)上的单调性
解:\(y'=1 >0\)
例14
\(y=2x^{2}-2x+4\)在\(\left( -\infty ,+\infty \right)\)上的单调性
解:\(y'=2x-2\)
令\(y' >0\),即\(x >1\),在\(\left( 1,+\infty \right)\)上函数单调递增
令\(y' <0\),即\(x <1\),在\(\left( -\infty ,1\right)\)上函数单调递减
例15
\(y=x^{3}-4x^{2}+x-1\)
解:
\(y'=3x^{2}-8x+1\)
令\(y' >0\),即在\(\left( -\infty ,\dfrac {4-\sqrt {13}}{3}\right) ,\left( \dfrac {4+\sqrt {13}}{3},+\infty \right)\)上函数单调递增
令\(y' <0\),即在\(\left( \dfrac {4-\sqrt {13}}{3} ,\dfrac {4+\sqrt {13}}{3} \right)\)上函数单调递减
知识点10 利用导数研究函数的性质
\(y=\dfrac {1}{3}x^{3}-4x+4\\ y'=x^{2}-4\)
令\(y=0\)即\(x=\pm2\)
x | (\(-\infty\),-2) | -2 | (-2,2) | 2 | (2,\(+\infty\)) |
---|---|---|---|---|---|
\(f'\left( x\right)\) | + | - | + | ||
\(f\left( x\right)\) | \(\nearrow\) | 极大值 | \(\searrow\) | 极小值 | \(\nearrow\) |
知识点11 曲边梯形与定积分
例16
求曲线\(y=x^{2}\)与直线\(x=1,y=0\)所围成区域的面积。
解:
[0,1]等分。
\(S_{n}=0+\left( \dfrac {1}{n}\right) ^{2}\cdot \dfrac {1}{n}+\left( \dfrac {2}{n}\right) ^{2}\cdot \dfrac {1}{n}+\ldots +\left( \dfrac {n-1}{n}\right) ^{2}\cdot \dfrac {1}{n}=\dfrac {1}{n^{3}}\)
\(\left[ 1^{2}+2^{2}+\ldots +\left( n-1\right) ^{2}\right] =\dfrac {1}{n^{3}}\)
\(\dfrac {n\left( n-1)(2n-1\right) }{6}=\dfrac {1}{6}\left( 1-\dfrac {1}{n}\right) \left( 2-\dfrac {1}{n}\right)\)
\(n\rightarrow \infty\)时
例12
\(y=f\left( u\right) ,u=ax+b\),求\(\dfrac {\Delta y}{\Delta x}\)
解:\(u'=a\)
\(\dfrac {\Delta y}{\Delta x}=\dfrac {\Delta y}{\Delta u}\cdot \dfrac {\Delta u}{\Delta x}\)
\(=f'\left( u\right) \cdot u'\left( x\right)\)
\(=a\cdot f'\left( u\right)\)
eg1
\(\mu =x^{-1},g\left( x\right) =4x^{2}+3x\)
解:
\(g\left( u\right) =4u^{2}+3u\\ g'\left( u\right) =8u+3\\ u'=-1\cdot x^{-2}=-\dfrac {1}{x^{2}}\)
eg2
\(\left[ \sin \left( 2x+\dfrac {\pi }{3}\right) \right]'\)
解:
\(u=2x+\dfrac {\pi }{3} \\y=\sin u\\ =\cos u\cdot 2\\ =2\cos \left( 2x+\dfrac {\pi }{3}\right)\)
eg3
\(\left[ \left( 5x+3\right) ^{5}\right] '\)
解:
\(y=u,u=5x+3,u'=5\)
\(y'=f'\left( u\right) \cdot u'\left( x\right) \\ =5u^{4}\cdot 5\\ =25\left( 5x+3\right) ^{4}\)
知识点12 [a,b]n分
\(a=x_{0} <x_{1} <x_{2} <\ldots <x_{n}=b\)
\(x_{i}=\max\){\(\Delta xi\)}
\(f\left( x\right)\):倍积函数
例16(续)
\(S=\int ^{1}_{0}x^{2}\Delta x=\dfrac {1}{3}\)
知识点13 微积分基本定理
如果\(F\left( x\right) '=f\left( x\right)\)且\(f\left( x\right)\)在\([a,b]\)内可积
则
\(\int ^{b}_{a}f\left( x\right) \Delta x\)
$ =F\left( x\right) \int ^{b}_{a}\(
\) =F\left( b\right) -F\left( a\right) $
例17
\(\int ^{1}_{0}x^{2}\Delta x=\)
解:
\(\because \left( \dfrac {1}{3}x^{3}\right) '=x^{2}\\ \therefore \int ^{1}_{0}x^{2}\Delta x\\ =\dfrac {x^{3}}{3}\int ^{1}_{0}=\dfrac {1}{3}\)
例18
\(\int ^{2}_{0}\left( x^{2}+1\right) \Delta x\\ =\left( \dfrac {x^{3}}{3}+x\right) \int ^{2}_{0}\)
例19
\(\int ^{\pi }_{0}\sin \Delta x\\ =-\cos x\int ^{\pi }_{0}\)