C++实现感知机模型

使用C++实现感知机模型 

最近在上机器学习课程,刚学习了感知机模型,于是决定自己动手写一下。

 

设计想法 想要构建出一种通用的模型设计形式,方便之后的机器学习模型也可以套用,于是尝试将最近看的设计模式运用上,类图一中在Train_data类中使用单例模式,在类图二中使用装饰者模式。

 

结构说明 Train_data类中封装了Data* data,通过data指针指向存储的训练数据;Perceptron_entity类中封装了Data* Weight_and_bias_stepint modle_value[N]、int  functional_margin[N]通过Weight_and_bias_step指针指向存储的权重W、偏置B以及步长n;  通过modle_value[N]存储感知机模型的值(WX+b), 通过functional_margin[N]存储函数间隔的值( Yi*(WX+b) ),   通过Perceptron_entity类来实例化感知机对象;Function类和 Optimize类分别是用来计算函数间隔和优化权重W、偏置B以及步长n。

 

结果分析1. 事实证明,设计模式的使用是要分场景的; 在Train_data类中并不需要使用单例模式,因为我还需要对Data进行修改,在Public中写了set函数对数据进行修改,这与单例模式的本意相悖;单例模式的本意是初始化一份资源,只可以供其他函数读取。 2.  此外,对类的的设计不够清晰,将数据、权重、偏置、以及学习率封装在Data类中,导致之后函数调用不够清楚。

 

改进想法1.对类进一步细化,将Data类分为两个类:Data和 Weight_bias,Data类封装数据;Weight_bias类封装W1、W2、B、n。   2.增强代码的复用性: 使用户能够对Perceptron_entity类中的Weight_and_bias_step进行修改,对一份数据可以定义不同Perceptron_entity的对象,可以尝试提供友元函数,破坏封装性,来达到这个目的。 3.进一步提升:使用户能够对Train_data类的对象中的原始数据进行修改和增加, 从而达到:不同数据,不同Perceptron_entity,的使用。

 

一.类图

 

 

二.C++代码

 

Data.h文件

#pragma once
class Data
{
private:
	int X1;
	int X2;
	int sample_signal;//正样本or负样本
	bool symbol=false;//标记分类正确与否
	int W1;
	int W2;
	int B;
	int n; //步长

public:
	Data();
	~Data();


	void set_x1(const int x1);
	void set_x2(const int x2);
	void set_sample_signal(const int sample_signal);
	void set_W1(const int W1);
	void set_W2(const int W2);
	void set_B(const int B);
	void set_n(const int n);
	void set_symbol(bool symbol);


	int get_x1();
	int get_x2();
	int get_sample_signal();
	int get_W1( );
	int get_W2( );
	int get_B( );
	int get_n( );
	bool get_symbol( );
};

Data::Data()
{
}

Data::~Data()
{
}

inline void Data::set_x1(const int x1)
{
	this->X1=x1;
}

inline void Data::set_x2(const int x2)
{
	this->X2 = x2;
}




inline void Data::set_sample_signal(const int sample_signal)
{
	this->sample_signal = sample_signal;
}

inline void Data::set_W1(const int W1)
{
	this->W1 = W1;
}

inline void Data::set_W2(const int W2)
{
	this->W2 = W2;
}

inline void Data::set_B(const int B)
{
	this->B = B;
}

inline void Data::set_n(const int n)
{
	this->n = n;
}

inline void Data::set_symbol(bool symbol)
{
	this->symbol = symbol;
}


inline int Data::get_x1()
{
	return X1;
}

inline int Data::get_x2()
{
	return X2;
}

inline int Data::get_sample_signal()
{
	return sample_signal;
}

inline int Data::get_W1()
{
	return W1;
}

inline int Data::get_W2()
{
	return W2;
}

inline int Data::get_B()
{
	return B;
}

inline int Data::get_n()
{
	return n;
}

inline bool Data::get_symbol()
{
	return symbol;
}

 

Train_data.h文件

#pragma once
#include"Data.h"
#define N 3
class Train_data
{
private:
	Data *data;
	static Train_data * unique_instance;
	Train_data();

public:

	 int judge();
	~Train_data();
	 static Train_data* getinstance();
	 Data * get_data();
	 
};


Train_data* Train_data::unique_instance = nullptr;



Train_data::Train_data()
{
	this->data = new Data[N];
	data[0].set_x1(3);
	data[0].set_x2(3);
	data[0].set_sample_signal(1);

	data[1].set_x1(4);
	data[1].set_x2(3);
	data[1].set_sample_signal(1);

	data[2].set_x1(1);
	data[2].set_x2(1);
	data[2].set_sample_signal(-1);
}


Train_data::~Train_data()
{
	//释放数组
	delete [ ]data;
}

inline Train_data* Train_data::getinstance()
{
	if (unique_instance == nullptr)
	{
		unique_instance = new Train_data();
	}
	return unique_instance;
}

inline Data * Train_data::get_data()
{
	return this->data;
}


inline int Train_data::judge()
{
	int number = 0;
	for (int i = 0; i < N; i++)
		if (data[i].get_symbol() == true)
			  number++;
	return number;
}

  

Perceptron.h文件

#pragma once
#include<iostream>
#include<string>
#include"Data.h"
#include"F://python/include/Python.h"
using namespace std;

class Perceptron
{
private:
	string  description;

public:
	Perceptron();
	~Perceptron();
	//ostream&  operator <<(ostream& ostr, const Perceptron& x);


	string get_Description() {}
	virtual int* caculate() { return nullptr; }
	virtual void  caculate(int n) {};
	virtual void display(){}
	virtual void set_functional_margin(const int value, const int n) {}
	virtual int * get_functional_margin() { return nullptr; }
	virtual Data * get_Weight_and_bias_and_step(){ return nullptr; }

};

Perceptron::Perceptron()
{
	this->description = "This is a perceptron class";
}

Perceptron::~Perceptron()
{


}

  

 Perceptron_entity.h文件

 

#pragma once
#include"Perceptron.h"
#include"Train_data.h"
#include"Data.h"
#include <cstdlib>

class Perceptron_entity: public  Perceptron
{
private:
	 Data * Weight_and_bias_and_step;
	 int model_value[N];
	 int functional_margin[N];
public:
	 Perceptron_entity();
	 ~Perceptron_entity();

	 string get_Description();
	 int * caculate();
	 void display();
	 void set_functional_margin(const int value, const int n);
	 int * get_functional_margin();
	 int * get_model_value();
     Data* get_Weight_and_bias_and_step();
};



inline Perceptron_entity::Perceptron_entity()
{
    cout << "init" << endl;
	Weight_and_bias_and_step = new Data();
	Weight_and_bias_and_step->set_W1(0);
	Weight_and_bias_and_step->set_W2(0);
	Weight_and_bias_and_step->set_B(0);
	Weight_and_bias_and_step->set_n(1);
    cout << Weight_and_bias_and_step->get_n() << endl;
}


Perceptron_entity::~Perceptron_entity()
{
	delete  Weight_and_bias_and_step;
}


inline string Perceptron_entity::get_Description()
{
	return string();
}


inline int* Perceptron_entity::caculate()
{
    cout <<" model_value "<< endl;
	Train_data *sample= Train_data::getinstance();
	for(int i=0;i<N;i++)
	model_value[i]=(sample->get_data())[i].get_x1()  * Weight_and_bias_and_step->get_W1() + (sample->get_data())[i].get_x2() * Weight_and_bias_and_step->get_W2() + Weight_and_bias_and_step->get_B();

	//if (temp >= 0)
	//	model_value = 1;
	//else
	//	model_value = -1;

	return model_value;
}


inline void Perceptron_entity::set_functional_margin(const int value, const int n)
{
	this->functional_margin[n] = value;
}

inline int* Perceptron_entity::get_functional_margin()
{
	return functional_margin;
}

inline int * Perceptron_entity::get_model_value()
{
	return model_value;
}

inline Data* Perceptron_entity::get_Weight_and_bias_and_step()
{
    return Weight_and_bias_and_step;
}


inline void Perceptron_entity::display()
{
    //int j = 0;
   // Train_data* sample = Train_data::getinstance();
    cout <<" print Weight_and_bias_and_step " << endl;

    cout << "W1: " << Weight_and_bias_and_step->get_W1()<<endl;
    cout << "W2: " << Weight_and_bias_and_step->get_W2()<<endl;
    cout << "B: " << Weight_and_bias_and_step->get_B()<<endl;
    cout << "n: " << Weight_and_bias_and_step->get_n()<<endl;



    ////***python调用***//
    ////初始化python模块
    //Py_Initialize();
    //// 检查初始化是否成功  

    //if (!Py_IsInitialized())
    //{
    //    cout << "szzvz" << endl;
    //    Py_Finalize();
    //}


    //PyRun_SimpleString("import sys");
    ////添加Insert模块路径  
    ////PyRun_SimpleString(chdir_cmd.c_str());
    //PyRun_SimpleString("sys.path.append('./')");
    ////PyRun_SimpleString("sys.argv = ['python.py']");
    //PyObject* pModule = NULL;
    ////导入模块  
    //pModule = PyImport_ImportModule("draw");

    //if (!pModule)
    //{
    //    cout << "Python get module failed." << endl;
    // 
    //}

    //cout << "Python get module succeed." << endl;

    //PyObject* pFunc = NULL;
    //pFunc = PyObject_GetAttrString(pModule, "_draw");
    //PyObject* ret=PyEval_CallObject(pFunc, NULL);



    ////获取Insert模块内_add函数  
    //PyObject* pv = PyObject_GetAttrString(pModule, "_draw_");
    //if (!pv || !PyCallable_Check(pv))
    //{
    //    cout << "Can't find funftion (_draw_)" << endl;
    //}
    //// cout << "Get function (_draw_) succeed." << endl;

    //////初始化要传入的参数,args配置成传入两个参数的模式  
    //PyObject* args = PyTuple_New(2*N+3);
    //PyObject* ArgList = PyTuple_New(1);


    ////将Long型数据转换成Python可接收的类型  

    //for (int i=0; i < N; i++,j++)
    //{
    //    PyObject* arg1 = PyLong_FromLong((sample->get_data())[i].get_x1());
    //    PyObject* arg2 = PyLong_FromLong((sample->get_data())[i].get_x2());
    //    PyTuple_SetItem(args, j, arg1);
    //    PyTuple_SetItem(args, ++j, arg2);
    //}

    // PyObject* arg3 = PyLong_FromLong(Weight_and_bias_and_step->get_W1());
    // PyTuple_SetItem(args, j++, arg3);
  
    // PyObject* arg4 = PyLong_FromLong(Weight_and_bias_and_step->get_W2());
    // PyTuple_SetItem(args, j++, arg4);

    // PyObject* arg5 = PyLong_FromLong(Weight_and_bias_and_step->get_B());
    // PyTuple_SetItem(args, j++, arg5);

    // PyTuple_SetItem(ArgList, 0, args);
    ////传入参数调用函数,并获取返回值  

    //PyObject* pRet = PyObject_CallObject(pv, ArgList);

    //if (pRet)
    //{
    //    //将返回值转换成long型  
    //    long result = PyLong_AsLong(pRet);
    //    cout << "result:" << result << endl;
    //}

    //Py_CLEAR(pModule);
    //Py_CLEAR(pFunc);
    //Py_CLEAR(ret);
    //Py_CLEAR(pv);
    //Py_CLEAR(args);
    //Py_CLEAR(ArgList);
    //Py_CLEAR(pRet);

    //Py_Finalize();

    //system("pause");
}

  

 

 

Suan_fa.h文件

#pragma once
#include"Perceptron.h"
#include"Data.h"

class Suan_fa: public Perceptron
{
private:

public:
	Suan_fa();
	~Suan_fa();
};

Suan_fa::Suan_fa()
{
}

Suan_fa::~Suan_fa()
{
}

  

 

Function.h文件

#pragma once
#include"Suan_fa.h"
#include"Data.h"
#include"Perceptron_entity.h"


class Function: public Suan_fa
{
private:
	Perceptron * perceptron;
public:
	Function(Perceptron *  entity);
	~Function();

	void  caculate(int n);
	 void  display();
};

Function::Function(Perceptron * entity)
{
	this->perceptron = entity;
}

Function::~Function()
{

}

inline void Function::caculate(int n)
{
	cout <<" print origin samples "<< endl;
	//计算functional_margin
	Train_data* sample = Train_data::getinstance();
	cout << " print first sample " << endl;
	cout <<"x1: "<<(sample->get_data())[0].get_x1() << endl;
	cout <<"y1: "<<(sample->get_data())[0].get_x2() << endl;
	cout << " print second sample " << endl;
	cout <<"x2: "<<(sample->get_data())[1].get_x1() << endl;
	cout <<"y2: "<<(sample->get_data())[1].get_x2() << endl;
	cout << " print third sample " << endl;
	cout <<"x3: "<<(sample->get_data())[2].get_x1() << endl;
	cout <<"y3: "<<(sample->get_data())[2].get_x2() << endl;
	int* array = perceptron->caculate();
	cout <<array[0]<< endl;
	cout <<array[1]<< endl;
	cout <<array[2]<< endl;
	perceptron->set_functional_margin(array[n]*(sample->get_data())[n].get_sample_signal(),n);

}

inline void Function::display()
{
	perceptron->display();
	//cout << "this is function" << endl;
}

  

 

Optimize.h文件

 

#pragma once
#include"Perceptron.h"
#include"Suan_fa.h"
#include"Train_data.h"

class Optimize:public Suan_fa
{
private:
	Perceptron * perceptron;
public:
	Optimize(Perceptron * entity);
	~Optimize();

	void  caculate(int n);
	void  display();
};

Optimize::Optimize(Perceptron * entity)
{
	this->perceptron = entity;
}

Optimize::~Optimize()
{

}

inline void Optimize::caculate(int n)
{   
	cout <<" print functional_margin "<< endl;
	Train_data * sample = Train_data::getinstance();


	cout << perceptron->get_functional_margin()[0] << endl;
	cout << perceptron->get_functional_margin()[1] << endl;
	cout << perceptron->get_functional_margin()[2] << endl;

	if (perceptron->get_functional_margin()[n] <= 0)
	{
	  cout <<" this time functional_margin 小于0 "<< endl<<endl;
	 /* cout <<perceptron->get_Weight_and_bias_and_step()->get_W1()<< endl;
	  cout <<perceptron->get_Weight_and_bias_and_step()->get_n()<< endl;
	  cout <<(sample->get_data())[n].get_sample_signal()<< endl;
	  cout <<(sample->get_data())[n].get_x1()<< endl;*/

	   (sample->get_data())[n].set_symbol(false);
	   perceptron->get_Weight_and_bias_and_step()->set_W1(perceptron->get_Weight_and_bias_and_step()->get_W1() + perceptron->get_Weight_and_bias_and_step()->get_n() * (sample->get_data())[n].get_sample_signal() * (sample->get_data())[n].get_x1());
	   perceptron->get_Weight_and_bias_and_step()->set_W2(perceptron->get_Weight_and_bias_and_step()->get_W2() + perceptron->get_Weight_and_bias_and_step()->get_n() * (sample->get_data())[n].get_sample_signal() * (sample->get_data())[n].get_x2());
	   perceptron->get_Weight_and_bias_and_step()->set_B(perceptron->get_Weight_and_bias_and_step()->get_B() + perceptron->get_Weight_and_bias_and_step()->get_n() * (sample->get_data())[n].get_sample_signal());
	}
	else
	   (sample->get_data())[n].set_symbol(true);
}


inline void Optimize::display()
{
	perceptron->display();

	//cout << "this is optimize" << endl;
}

  

 

main.cpp文件

#include"Data.h"
#include"Function.h"
#include"Optimize.h"
#include"Perceptron.h"
#include"Perceptron_entity.h"
#include"Suan_fa.h"
#include"Train_data.h"
#include<iostream>
#include"F://python/include/Python.h"

using namespace std;


int  main()
{
    int loop_number = 1;
    int number = 0;
    Train_data * samples = Train_data::getinstance();
    Perceptron* Entity = new Perceptron_entity();
    while (samples->judge()!=3)
    {
        cout<<"This is "<<loop_number<<" loop "<<endl;
        //Entity->display();
        Function entity(Entity);
        entity.caculate(number);
        entity.display();
        Optimize optimize(Entity);
        optimize.caculate(number);
        cout <<" print the Weight_and_bias_and_step after optimize " << endl;
        optimize.display();

        loop_number++;
        if (number == 2)
            number = number % 2;
        else
            number++;
    }
    
    return 0;
}

  

 

posted @ 2021-04-08 11:34  liweikuan  阅读(121)  评论(0编辑  收藏  举报