tensorflow学习-第一章

tensorflow项目的github地址:

https://github.com/teafternoon/tensorflow-using

 

tensorflow学习

安装tensorflow:

  作者使用的是python3,安装命令pip3 install tensorflow,这个时cpu版本的,如果要安装gpu版本的使用命令pip3 install tensorflow-gpu

安装GPU版tensorflow需要先安装cuda sdk

cuda sdk下载官网:https://www.nvidia.cn/object/cuda_get_cn_old.html

 

第一小节:MNIST

MNIST是一个入门级的计算机视觉数据集,它包含了各种手写数字图片。

基于此,我们训练一个机器学习模型用于识别图片里面的数字。该识别基于Softmax Regression

mnist数据集下载地址:http://yann.lecun.com/exdb/mnist/

demo1:

 1 #!/usr/bin/python3
 2 # -*- coding: utf-8 -*-
 3 
 4 from tensorflow.examples.tutorials.mnist import input_data
 5 
 6 mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
 7 
 8 import tensorflow as tf
 9 
10 x = tf.placeholder("float", [None, 784])
11 
12 W = tf.Variable(tf.zeros([784, 10]))
13 b = tf.Variable(tf.zeros([10]))
14 
15 y = tf.nn.softmax(tf.matmul(x, W) + b)
16 
17 y_ = tf.placeholder("float", [None, 10])
18 
19 cross_entropy = -tf.reduce_sum(y_ * tf.log(y))
20 
21 train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
22 
23 init = tf.initialize_all_variables()
24 
25 sess = tf.Session()
26 sess.run(init)
27 
28 for i in range(1000):
29     batch_xs, batch_ys = mnist.train.next_batch(100)
30     sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
31 
32 correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
33 
34 accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
35 
36 print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))

demo2:

 1 #!/usr/bin/python3
 2 # -*- coding: utf-8 -*-
 3 
 4 from tensorflow.examples.tutorials.mnist import input_data
 5 
 6 mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
 7 
 8 import tensorflow as tf
 9 
10 sess = tf.InteractiveSession()
11 
12 x = tf.placeholder("float", shape=[None, 784])
13 y_ = tf.placeholder("float", shape=[None, 10])
14 
15 W = tf.Variable(tf.zeros([784, 10]))
16 b = tf.Variable(tf.zeros([10]))
17 
18 sess.run(tf.initialize_all_variables())
19 
20 y = tf.nn.softmax(tf.matmul(x, W) + b)
21 
22 cross_entropy = -tf.reduce_sum(y_ * tf.log(y))
23 
24 train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
25 
26 for i in range(1000):
27     batch = mnist.train.next_batch(50)
28     train_step.run(feed_dict={x: batch[0], y_: batch[1]})
29 
30 correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
31 
32 accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
33 
34 print(accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
35 
36 def weight_variable(shape):
37     initial = tf.truncated_normal(shape, stddev=0.1)
38     return tf.Variable(initial)
39 
40 def bias_variable(shape):
41     initial = tf.constant(0.1, shape=shape)
42     return tf.Variable(initial)
43 
44 def conv2d(x, W):
45     return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
46 
47 def max_pool_2x2(x):
48     return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
49                         strides=[1, 2, 2, 1], padding='SAME')
50 
51 W_conv1 = weight_variable([5, 5, 1, 32])
52 b_conv1 = bias_variable([32])
53 
54 x_image = tf.reshape(x, [-1,28,28,1])
55 
56 h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
57 h_pool1 = max_pool_2x2(h_conv1)
58 
59 W_conv2 = weight_variable([5, 5, 32, 64])
60 b_conv2 = bias_variable([64])
61 
62 h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
63 h_pool2 = max_pool_2x2(h_conv2)
64 
65 W_fc1 = weight_variable([7 * 7 * 64, 1024])
66 b_fc1 = bias_variable([1024])
67 
68 h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
69 h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
70 
71 keep_prob = tf.placeholder("float")
72 h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
73 
74 W_fc2 = weight_variable([1024, 10])
75 b_fc2 = bias_variable([10])
76 
77 y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
78 
79 cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
80 train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
81 correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
82 accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
83 sess.run(tf.initialize_all_variables())
84 for i in range(20000):
85     batch = mnist.train.next_batch(50)
86     if i%100 == 0:
87         train_accuracy = accuracy.eval(feed_dict={
88         x:batch[0], y_: batch[1], keep_prob: 1.0})
89         print("step %d, training accuracy %g"%(i, train_accuracy))
90     train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
91 
92 print("test accuracy %g"%accuracy.eval(feed_dict={
93     x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

 

第二小节:tensorboard

安装tensorflow的时候会一并安装,可以通过pip3 freeze查看已经安装了的tensorflow相关的库

tensor开头的有:tensorflow,tensorboard,tensorflow-estimator这三个

 

tensorboard是一款tensorflow的可视化工具,可以用来展现 TensorFlow 图,绘制图像生成的定量指标图以及显示附加数据(如其中传递的图像)

demo1:

 1 #!/usr/bin/python3
 2 # -*- coding: utf-8 -*-
 3 
 4 import tensorflow as tf
 5 
 6 a = tf.constant([1.0, 2.0, 3.0], name='input1')
 7 b = tf.Variable(tf.random_uniform([3]), name='input2')
 8 add = tf.add_n([a, b], name='addOP')
 9 
10 with tf.Session() as sess:
11     sess.run(tf.global_variables_initializer())
12     writer = tf.summary.FileWriter('./', sess.graph)
13     print(sess.run(add))
14 writer.close()

 

 

To Be Continue......

posted on 2019-07-06 11:54  Alvin2012  阅读(117)  评论(0编辑  收藏  举报

导航