Flink数据流图的生成----简单执行计划的生成

Flink的数据流图的生成主要分为简单执行计划-->StreamGraph的生成-->JobGraph的生成-->ExecutionGraph的生成-->物理执行图。其中前三个(ExecutionGraph的之前都是在client上生成的)。ExectuionGraph是JobGraph的并行版本,是在JobManager(master)端生成的。而物理执行图只是一个抽象的概念,其具体的执行是在多个slave上并行执行的。

原理分析

    

  Flink效仿了传统的关系型数据库在运行SQL时生成运行计划并对其进行优化的思路。在具体生成数据流图之前会生成一个运行计划,当程序执行execute方法时,才具体生成数据流图运行任务。

  首先Flink会加载数据源,读取配置文件,获取配置参数parallelism等,为source 的transformation对应的类型是SourceTransformation,opertorName是source,然后进入flatmap,用户重写了内置的flatmap内核函数,按照空格进行划分单词,获取到其各种配制参数,parallelism以及输出的类型封装Tuple2<String,Integer>,以及operatorName是Flat Map,其对应的Transformation类型是OneInputTransformation。然后开始keyby(0),其中0指的是Tuple2<String, Integer>中的String,其意义是按照word进行重分区,其对应的parallelism是4,operatorName是partition,Transformation的类型是PartitionTransformation,输出类型的封装是Tuple2<String, Integer>。接着sum(1),该函数的作用是把相同的key对应的值进行加1操作。其对应的parallelism是4,operatorName是keyed Aggregation,对应的输出类型封装是Tuple2<String, Integer>,Transformation的类型是OneInputTransformation。最后是进行结果输出处理sink,对应的parallelism是4,输出类型的封装是Tuple2<String, Integer>,对应的operatorName是sink,对应的Transformation类型是SinkTransformation。

源码

以WordCount.java为例:

 1 package org.apache.flink.streaming.examples.wordcount;
 2 public class WordCount {
 3     private static  Logger LOG = LoggerFactory.getLogger(WordCount.class);
 4     private static SimpleDateFormat df=new SimpleDateFormat("yyyy/MM/dd HH:mm:ss:SSS");
 5     public static long time=0;
 6     public static void main(String[] args) throws Exception {
 7         // Checking input parameters
 8         LOG.info("set up the execution environment: start= "+df.format(System.currentTimeMillis()));
 9         final ParameterTool params = ParameterTool.fromArgs(args);
10         final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
11         env.getConfig().setGlobalJobParameters(params);
12         DataStream<String> text;
13         if (params.has("input")) {
14             text = env.readTextFile(params.get("input"));
15         } else {
16             text = env.fromElements(WordCountData.WORDS);
17         }
18         DataStream<Tuple2<String, Integer>> counts =
19             text.flatMap(new Tokenizer()).keyBy(0).sum(1);
20         if (params.has("output")) {
21             counts.writeAsText(params.get("output"));
22         } else {
23             System.out.println("Printing result to stdout. Use --output to specify output path.");
24             counts.print();
25         }
26         env.execute("Streaming WordCount");
27     }
28     public static final class Tokenizer implements FlatMapFunction<String, Tuple2<String, Integer>> {
29         private static final long serialVersionUID = 1L;
30         @Override
31         public void flatMap(String value, Collector<Tuple2<String, Integer>> out)
32                 throws Exception {
33             String[] tokens = value.toLowerCase().split("\\W+");
34             for (String token : tokens) {
35                 if (token.length() > 0) {
36                     out.collect(new Tuple2<String, Integer>(token, 1));
37                 }
38             }
39         }
40     }
41 }

  Flink在程序执行时,首先会获取程序需要的执行计划,类似数据的惰性加载,当具体执行execute()函数时,程序才会具体真正执行。首先执行

1 text = env.readTextFile(params.get("input"));

  该函数的作用是加载数据文件,获取数据源,形成source的属性信息,包括source的Transformation类型、并行度、输出类型等。源码如下:

 1 public final <OUT> DataStreamSource<OUT> readTextFile(OUT... data) {
 2         TypeInformation<OUT> typeInfo;
 3         try {
 4             typeInfo = TypeExtractor.getForObject(data[0]);
 5         }
 6         return fromCollection(Arrays.asList(data), typeInfo);
 7 }
 8 
 9 public <OUT> DataStreamSource<OUT> fromCollection(Collection<OUT> data, TypeInformation<OUT> typeInfo) {
10         FromElementsFunction.checkCollection(data, typeInfo.getTypeClass());
11         SourceFunction<OUT> function;
12         try {
13             function = new FromElementsFunction<>(typeInfo.createSerializer(getConfig()), data);
14         }
15         catch (IOException e) {
16             throw new RuntimeException(e.getMessage(), e);
17         }
18         return addSource(function, "Collection Source", typeInfo).setParallelism(1);
19     }
20 
21     public <OUT> DataStreamSource<OUT> addSource(SourceFunction<OUT> function, String sourceName, TypeInformation<OUT> typeInfo) {
22         boolean isParallel = function instanceof ParallelSourceFunction;
23         clean(function);
24         StreamSource<OUT, ?> sourceOperator;
25         if (function instanceof StoppableFunction) {
26             sourceOperator = new StoppableStreamSource<>(cast2StoppableSourceFunction(function));
27         } else {
28             sourceOperator = new StreamSource<>(function);
29         }
30         return new DataStreamSource<>(this, typeInfo, sourceOperator, isParallel, sourceName);
31     }
32 
33 public DataStreamSource(StreamExecutionEnvironment environment,
34             TypeInformation<T> outTypeInfo, StreamSource<T, ?> operator,
35             boolean isParallel, String sourceName) {
36         super(environment, new SourceTransformation<>(sourceName, operator, outTypeInfo, environment.getParallelism()));    
37         this.isParallel = isParallel;
38         if (!isParallel) {
39             setParallelism(1);
40         }
41     }
获取source信息

  从上述代码可知,这部分会执行addSource()函数,通过new StreamSource,生成source的operator,然后通过new DataStreamSource生成SourceTransformation,获取并行度等。然后就是执行flatmap函数text.flatMap(new Tokenizer()),该函数内和source类似,也是获取Transformation类型、并行度、输出类型等。

 1 public <R> SingleOutputStreamOperator<R> flatMap(FlatMapFunction<T, R> flatMapper) {
 2         TypeInformation<R> outType = TypeExtractor.getFlatMapReturnTypes(clean(flatMapper),
 3                 getType(), Utils.getCallLocationName(), true);
 4         SingleOutputStreamOperator result = transform("Flat Map", outType, new StreamFlatMap<>(clean(flatMapper)));
 5         return result;
 6     }
 7 
 8 public <R> SingleOutputStreamOperator<R> transform(String operatorName, TypeInformation<R> outTypeInfo, OneInputStreamOperator<T, R> operator) {
 9         transformation.getOutputType();
10         OneInputTransformation<T, R> resultTransform = new OneInputTransformation<>(
11                 this.transformation,
12                 operatorName,
13                 operator,
14                 outTypeInfo,
15                 environment.getParallelism());
16         SingleOutputStreamOperator<R> returnStream = new SingleOutputStreamOperator(environment, resultTransform);
17         getExecutionEnvironment().addOperator(resultTransform);
18         return returnStream;
19     }
flatmap获取信息

  对应该operator,其Transformation的类型是OneInputTransformation类型,对应着属性信息有该operator的名称,输出类型,执行的并行度等,然后会执行addOperator函数将该operator (flatmap)加入到执行环境中,以便后续执行。 接下来执行.keyBy(0),该函数的作用就是重分区,把word的单词作为key,然后按照key相同的放在一个分区内,方便执行。该函数的内部是形成其transformation类型(PartitionTransformation),以及相关的属性信息等。

 1 private KeyedStream<T, Tuple> keyBy(Keys<T> keys) {
 2         return new KeyedStream<>(this, clean(KeySelectorUtil.getSelectorForKeys(keys,
 3                 getType(), getExecutionConfig())));
 4     }
 5 public KeyedStream(DataStream<T> dataStream, KeySelector<T, KEY> keySelector, TypeInformation<KEY> keyType) {
 6         super(
 7             dataStream.getExecutionEnvironment(),
 8             new PartitionTransformation<>(
 9                 dataStream.getTransformation(),
10                 new KeyGroupStreamPartitioner<>(keySelector, StreamGraphGenerator.DEFAULT_LOWER_BOUND_MAX_PARALLELISM)));
11         this.keySelector = keySelector;
12         this.keyType = validateKeyType(keyType);
13         LOG.info("part of keyBy(partition): end= "+df.format(System.currentTimeMillis()));
14     }
keyby获取信息

  在上述代码中,keyby会创建一个PartitionTransformation,作为其Transformation的类型,该在类中会得到input(输入数据),以及partioner分区器。同样会得到执行的并行度、输出类型等信息。 接下来是sum(1),该函数的作用是按照keyby的word作为key,进行加1操作。源码如下:

1 protected SingleOutputStreamOperator<T> aggregate(AggregationFunction<T> aggregate) {
2         StreamGroupedReduce<T> operator = new StreamGroupedReduce<T>(
3                 clean(aggregate), getType().createSerializer(getExecutionConfig()));
4         return transform("Keyed Aggregation", getType(), operator);
5     }
aggregate

  在上述的代码中,可以看到,该operator的所属的类型是StreamGroupedReduce,对着着核心方法reduce(),通过new该对象,会获取到其operator的名称等属性信息,然后执行transform()函数,该函数的代码之前已经给出,主要的作用是创建一个该operator的Transformation类型,即OneInputTransformtion,会得到并行度、输出类型等属性信息,然后执行addOperator()函数,将operator加入执行环境,让能起能够具体执行任务。 接下来会对结果进行输出,将执行counts.print(),该函数内部对应着一个operator,即sink(具体的逻辑就是结果输出),源码如下:

 1 public DataStreamSink<T> print() {
 2         PrintSinkFunction<T> printFunction = new PrintSinkFunction<>();
 3         return addSink(printFunction);
 4     }
 5 public DataStreamSink<T> addSink(SinkFunction<T> sinkFunction) {
 6         transformation.getOutputType();
 7         if (sinkFunction instanceof InputTypeConfigurable) {
 8             ((InputTypeConfigurable) sinkFunction).setInputType(getType(), getExecutionConfig());
 9         }
10         StreamSink<T> sinkOperator = new StreamSink<>(clean(sinkFunction));
11         DataStreamSink<T> sink = new DataStreamSink<>(this, sinkOperator);
12         getExecutionEnvironment().addOperator(sink.getTransformation());
13         return sink;
14     }
15 protected DataStreamSink(DataStream<T> inputStream, StreamSink<T> operator) {
16         this.transformation = new SinkTransformation<T>(inputStream.getTransformation(), "Unnamed", operator, inputStream.getExecutionEnvironment().getParallelism());
17     }
sink获取信息

  print()函数内部只有一个方法:addSink(),其功能和addSource()一样,首先会创建一个StreamSink,生成一个operator对象,然后创建DataStreamSink,该类中会创建一个该operator的Transformation类型即SinkTransformtion,会得到该operator的名称,并行度,输出类型等属性信息。同样,会执行addOperator()函数,该函数的作用将该operator加入到env执行环境中,用来进行具体操作。

 

 

 

 

 

posted @ 2018-03-26 21:03  liurio  阅读(1329)  评论(0编辑  收藏  举报