Codeforces Round #201 (Div. 2). E--Number Transformation II(贪心)


 

Time Limit:1000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u

Description

You are given a sequence of positive integers x1, x2, ..., xn and two non-negative integers a and b. Your task is to transform a into b. To do that, you can perform the following moves:

  • subtract 1 from the current a;
  • subtract a mod xi(1 ≤ i ≤ n) from the current a.

Operation a mod xi means taking the remainder after division of number a by number xi.

Now you want to know the minimum number of moves needed to transform a into b.

Input

The first line contains a single integer n (1 ≤  n ≤ 105). The second line contains n space-separated integers x1, x2, ..., xn (2 ≤  xi ≤ 109). The third line contains two integers a and b (0  ≤ b ≤  a ≤ 109, a - b ≤ 106).

Output

Print a single integer — the required minimum number of moves needed to transform number a into number b.

Sample Input

Input

3
3 4 5
30 17

Output

6

Input

3
5 6 7
1000 200

Output

206
 
题意:
给出n个数,以及a跟b,你有两种操作,要么a-1,要么a-a%x[i],问最终由a变到b需要多少步
思路:
一开始以为是数论之类的题目,不敢用暴力写,但在看了题解之后发现用暴力贪心再加一个小剪枝就完全能过。。。                                                  
由于元素有可能重复,所以需要对所有元素去重。
然后得知道一点,如果a-a%x[i]如果小于b,那以后无论如何变a-a%x[i]仍然会小于b,所以x的个数会逐渐递减。
接下来就是贪心,每次取a-1跟a-a%x[i]最小的数,直到a==b

这里有一个小细节,我第一次交的时候,在二层循环内部是用的两个max处理的(见注释掉的部分),然后挂掉了。。。。

然后我改成了一个min,就AC了,

以后能够简化运算的地方一定要简化,特别是循环内部

代码:

#include<bits/stdc++.h>
using namespace std;
const int MAXN=1e5+3;
int m[MAXN];
int main()
{
    std::ios::sync_with_stdio(false);
    std::cin.tie(0);
    //freopen("data.in","r",stdin);
    int a,b;
    int n;
    cin>>n;
    for(int i=0;i<n;i++){
        cin>>m[i];
    }
    cin>>a>>b;
    sort(m,m+n);
    int len=unique(m,m+n)-m;
    int res=0;
    int now=-1;
    while(a>b){
        //now=a-1;
        now=a-1;
        for(int i=0;i<len;i++){
            if(a-a%m[i]<b){
                m[i--]=m[--len];
            }
            else{
//                now=max(now,a%m[i]);
//                now=max(now,1);
                now=min(now,a-a%m[i]);
            }
        }
        //a-=now;
        a=now;
        res++;
    }
    cout<<res<<endl;
}
posted @ 2017-03-16 17:07  Pic  阅读(265)  评论(0编辑  收藏  举报