今天也是阳光正好

  博客园  :: 首页  :: 新随笔  :: 联系 :: 订阅 订阅  :: 管理

转载自:https://blog.csdn.net/y_k_y/article/details/84633001

一、概述

Stream 是 Java8 中处理集合的关键抽象概念,它可以指定你希望对集合进行的操作,可以执行非常复杂的查找、过滤和映射数据等操作。使用Stream API 对集合数据进行操作,就类似于使用 SQL 执行的数据库查询。也可以使用 Stream API 来并行执行操作。简而言之,Stream API 提供了一种高效且易于使用的处理数据的方式。

特点:

        1 . 不是数据结构,不会保存数据。

        2. 不会修改原来的数据源,它会将操作后的数据保存到另外一个对象中。(保留意见:毕竟peek方法可以修改流中元素)

        3. 惰性求值,流在中间处理过程中,只是对操作进行了记录,并不会立即执行,需要等到执行终止操作的时候才会进行实际的计算。

二、分类

    无状态:指元素的处理不受之前元素的影响;

    有状态:指该操作只有拿到所有元素之后才能继续下去。

    非短路操作:指必须处理所有元素才能得到最终结果;

    短路操作:指遇到某些符合条件的元素就可以得到最终结果,如 A || B,只要A为true,则无需判断B的结果。

三、具体用法

1. 流的常用创建方法

1.1 使用Collection下的 stream() 和 parallelStream() 方法

  1.  
    List<String> list = new ArrayList<>();
  2.  
    Stream<String> stream = list.stream(); //获取一个顺序流
  3.  
    Stream<String> parallelStream = list.parallelStream(); //获取一个并行流

1.2 使用Arrays 中的 stream() 方法,将数组转成流

  1.  
    Integer[] nums = new Integer[10];
  2.  
    Stream<Integer> stream = Arrays.stream(nums);

1.3 使用Stream中的静态方法:of()、iterate()、generate()

  1.  
    Stream<Integer> stream = Stream.of(1,2,3,4,5,6);
  2.  
     
  3.  
    Stream<Integer> stream2 = Stream.iterate(0, (x) -> x + 2).limit(6);
  4.  
    stream2.forEach(System.out::println); // 0 2 4 6 8 10
  5.  
     
  6.  
    Stream<Double> stream3 = Stream.generate(Math::random).limit(2);
  7.  
    stream3.forEach(System.out::println);

1.4 使用 BufferedReader.lines() 方法,将每行内容转成流

  1.  
    BufferedReader reader = new BufferedReader(new FileReader("F:\\test_stream.txt"));
  2.  
    Stream<String> lineStream = reader.lines();
  3.  
    lineStream.forEach(System.out::println);

1.5 使用 Pattern.splitAsStream() 方法,将字符串分隔成流

  1.  
    Pattern pattern = Pattern.compile(",");
  2.  
    Stream<String> stringStream = pattern.splitAsStream("a,b,c,d");
  3.  
    stringStream.forEach(System.out::println);

2. 流的中间操作

2.1 筛选与切片
        filter:过滤流中的某些元素
        limit(n):获取n个元素
        skip(n):跳过n元素,配合limit(n)可实现分页
        distinct:通过流中元素的 hashCode() 和 equals() 去除重复元素

  1.  
    Stream<Integer> stream = Stream.of(6, 4, 6, 7, 3, 9, 8, 10, 12, 14, 14);
  2.  
     
  3.  
    Stream<Integer> newStream = stream.filter(s -> s > 5) //6 6 7 9 8 10 12 14 14
  4.  
    .distinct() //6 7 9 8 10 12 14
  5.  
    .skip(2) //9 8 10 12 14
  6.  
    .limit(2); //9 8
  7.  
    newStream.forEach(System.out::println);

2.2 映射        
        map:接收一个函数作为参数,该函数会被应用到每个元素上,并将其映射成一个新的元素。
        flatMap:接收一个函数作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流。

  1.  
    List<String> list = Arrays.asList("a,b,c", "1,2,3");
  2.  
     
  3.  
    //将每个元素转成一个新的且不带逗号的元素
  4.  
    Stream<String> s1 = list.stream().map(s -> s.replaceAll(",", ""));
  5.  
    s1.forEach(System.out::println); // abc 123
  6.  
     
  7.  
    Stream<String> s3 = list.stream().flatMap(s -> {
  8.  
    //将每个元素转换成一个stream
  9.  
    String[] split = s.split(",");
  10.  
    Stream<String> s2 = Arrays.stream(split);
  11.  
    return s2;
  12.  
    });
  13.  
    s3.forEach(System.out::println); // a b c 1 2 3

2.3 排序
        sorted():自然排序,流中元素需实现Comparable接口
        sorted(Comparator com):定制排序,自定义Comparator排序器  

  1.  
    List<String> list = Arrays.asList("aa", "ff", "dd");
  2.  
    //String 类自身已实现Compareable接口
  3.  
    list.stream().sorted().forEach(System.out::println);// aa dd ff
  4.  
     
  5.  
    Student s1 = new Student("aa", 10);
  6.  
    Student s2 = new Student("bb", 20);
  7.  
    Student s3 = new Student("aa", 30);
  8.  
    Student s4 = new Student("dd", 40);
  9.  
    List<Student> studentList = Arrays.asList(s1, s2, s3, s4);
  10.  
     
  11.  
    //自定义排序:先按姓名升序,姓名相同则按年龄升序
  12.  
    studentList.stream().sorted(
  13.  
    (o1, o2) -> {
  14.  
    if (o1.getName().equals(o2.getName())) {
  15.  
    return o1.getAge() - o2.getAge();
  16.  
    } else {
  17.  
    return o1.getName().compareTo(o2.getName());
  18.  
    }
  19.  
    }
  20.  
    ).forEach(System.out::println);

2.4 消费
        peek:如同于map,能得到流中的每一个元素。但map接收的是一个Function表达式,有返回值;而peek接收的是Consumer表达式,没有返回值。

  1.  
    Student s1 = new Student("aa", 10);
  2.  
    Student s2 = new Student("bb", 20);
  3.  
    List<Student> studentList = Arrays.asList(s1, s2);
  4.  
     
  5.  
    studentList.stream()
  6.  
    .peek(o -> o.setAge(100))
  7.  
    .forEach(System.out::println);
  8.  
     
  9.  
    //结果:
  10.  
    Student{name='aa', age=100}
  11.  
    Student{name='bb', age=100}

3. 流的终止操作

3.1 匹配、聚合操作
        allMatch:接收一个 Predicate 函数,当流中每个元素都符合该断言时才返回true,否则返回false
        noneMatch:接收一个 Predicate 函数,当流中每个元素都不符合该断言时才返回true,否则返回false
        anyMatch:接收一个 Predicate 函数,只要流中有一个元素满足该断言则返回true,否则返回false
        findFirst:返回流中第一个元素
        findAny:返回流中的任意元素
        count:返回流中元素的总个数
        max:返回流中元素最大值
        min:返回流中元素最小值

  1.  
    List<Integer> list = Arrays.asList(1, 2, 3, 4, 5);
  2.  
     
  3.  
    boolean allMatch = list.stream().allMatch(e -> e > 10); //false
  4.  
    boolean noneMatch = list.stream().noneMatch(e -> e > 10); //true
  5.  
    boolean anyMatch = list.stream().anyMatch(e -> e > 4); //true
  6.  
     
  7.  
    Integer findFirst = list.stream().findFirst().get(); //1
  8.  
    Integer findAny = list.stream().findAny().get(); //1
  9.  
     
  10.  
    long count = list.stream().count(); //5
  11.  
    Integer max = list.stream().max(Integer::compareTo).get(); //5
  12.  
    Integer min = list.stream().min(Integer::compareTo).get(); //1

3.2 规约操作
        Optional<T> reduce(BinaryOperator<T> accumulator):第一次执行时,accumulator函数的第一个参数为流中的第一个元素,第二个参数为流中元素的第二个元素;第二次执行时,第一个参数为第一次函数执行的结果,第二个参数为流中的第三个元素;依次类推。
        T reduce(T identity, BinaryOperator<T> accumulator):流程跟上面一样,只是第一次执行时,accumulator函数的第一个参数为identity,而第二个参数为流中的第一个元素。
        <U> U reduce(U identity,BiFunction<U, ? super T, U> accumulator,BinaryOperator<U> combiner):在串行流(stream)中,该方法跟第二个方法一样,即第三个参数combiner不会起作用。在并行流(parallelStream)中,我们知道流被fork join出多个线程进行执行,此时每个线程的执行流程就跟第二个方法reduce(identity,accumulator)一样,而第三个参数combiner函数,则是将每个线程的执行结果当成一个新的流,然后使用第一个方法reduce(accumulator)流程进行规约。

  1.  
    //经过测试,当元素个数小于24时,并行时线程数等于元素个数,当大于等于24时,并行时线程数为16
  2.  
    List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24);
  3.  
     
  4.  
    Integer v = list.stream().reduce((x1, x2) -> x1 + x2).get();
  5.  
    System.out.println(v); // 300
  6.  
     
  7.  
    Integer v1 = list.stream().reduce(10, (x1, x2) -> x1 + x2);
  8.  
    System.out.println(v1); //310
  9.  
     
  10.  
    Integer v2 = list.stream().reduce(0,
  11.  
    (x1, x2) -> {
  12.  
    System.out.println("stream accumulator: x1:" + x1 + " x2:" + x2);
  13.  
    return x1 - x2;
  14.  
    },
  15.  
    (x1, x2) -> {
  16.  
    System.out.println("stream combiner: x1:" + x1 + " x2:" + x2);
  17.  
    return x1 * x2;
  18.  
    });
  19.  
    System.out.println(v2); // -300
  20.  
     
  21.  
    Integer v3 = list.parallelStream().reduce(0,
  22.  
    (x1, x2) -> {
  23.  
    System.out.println("parallelStream accumulator: x1:" + x1 + " x2:" + x2);
  24.  
    return x1 - x2;
  25.  
    },
  26.  
    (x1, x2) -> {
  27.  
    System.out.println("parallelStream combiner: x1:" + x1 + " x2:" + x2);
  28.  
    return x1 * x2;
  29.  
    });
  30.  
    System.out.println(v3); //197474048

3.3 收集操作
        collect:接收一个Collector实例,将流中元素收集成另外一个数据结构。
        Collector<T, A, R> 是一个接口,有以下5个抽象方法:
            Supplier<A> supplier():创建一个结果容器A
            BiConsumer<A, T> accumulator():消费型接口,第一个参数为容器A,第二个参数为流中元素T。
            BinaryOperator<A> combiner():函数接口,该参数的作用跟上一个方法(reduce)中的combiner参数一样,将并行流中各                                                                 个子进程的运行结果(accumulator函数操作后的容器A)进行合并。
            Function<A, R> finisher():函数式接口,参数为:容器A,返回类型为:collect方法最终想要的结果R。
            Set<Characteristics> characteristics():返回一个不可变的Set集合,用来表明该Collector的特征。有以下三个特征:
                CONCURRENT:表示此收集器支持并发。(官方文档还有其他描述,暂时没去探索,故不作过多翻译)
                UNORDERED:表示该收集操作不会保留流中元素原有的顺序。
                IDENTITY_FINISH:表示finisher参数只是标识而已,可忽略。
        注:如果对以上函数接口不太理解的话,可参考我另外一篇文章:Java 8 函数式接口

3.3.1 Collector 工具库:Collectors

  1.  
    Student s1 = new Student("aa", 10,1);
  2.  
    Student s2 = new Student("bb", 20,2);
  3.  
    Student s3 = new Student("cc", 10,3);
  4.  
    List<Student> list = Arrays.asList(s1, s2, s3);
  5.  
     
  6.  
    //装成list
  7.  
    List<Integer> ageList = list.stream().map(Student::getAge).collect(Collectors.toList()); // [10, 20, 10]
  8.  
     
  9.  
    //转成set
  10.  
    Set<Integer> ageSet = list.stream().map(Student::getAge).collect(Collectors.toSet()); // [20, 10]
  11.  
     
  12.  
    //转成map,注:key不能相同,否则报错
  13.  
    Map<String, Integer> studentMap = list.stream().collect(Collectors.toMap(Student::getName, Student::getAge)); // {cc=10, bb=20, aa=10}
  14.  
     
  15.  
    //字符串分隔符连接
  16.  
    String joinName = list.stream().map(Student::getName).collect(Collectors.joining(",", "(", ")")); // (aa,bb,cc)
  17.  
     
  18.  
    //聚合操作
  19.  
    //1.学生总数
  20.  
    Long count = list.stream().collect(Collectors.counting()); // 3
  21.  
    //2.最大年龄 (最小的minBy同理)
  22.  
    Integer maxAge = list.stream().map(Student::getAge).collect(Collectors.maxBy(Integer::compare)).get(); // 20
  23.  
    //3.所有人的年龄
  24.  
    Integer sumAge = list.stream().collect(Collectors.summingInt(Student::getAge)); // 40
  25.  
    //4.平均年龄
  26.  
    Double averageAge = list.stream().collect(Collectors.averagingDouble(Student::getAge)); // 13.333333333333334
  27.  
    // 带上以上所有方法
  28.  
    DoubleSummaryStatistics statistics = list.stream().collect(Collectors.summarizingDouble(Student::getAge));
  29.  
    System.out.println("count:" + statistics.getCount() + ",max:" + statistics.getMax() + ",sum:" + statistics.getSum() + ",average:" + statistics.getAverage());
  30.  
     
  31.  
    //分组
  32.  
    Map<Integer, List<Student>> ageMap = list.stream().collect(Collectors.groupingBy(Student::getAge));
  33.  
    //多重分组,先根据类型分再根据年龄分
  34.  
    Map<Integer, Map<Integer, List<Student>>> typeAgeMap = list.stream().collect(Collectors.groupingBy(Student::getType, Collectors.groupingBy(Student::getAge)));
  35.  
     
  36.  
    //分区
  37.  
    //分成两部分,一部分大于10岁,一部分小于等于10岁
  38.  
    Map<Boolean, List<Student>> partMap = list.stream().collect(Collectors.partitioningBy(v -> v.getAge() > 10));
  39.  
     
  40.  
    //规约
  41.  
    Integer allAge = list.stream().map(Student::getAge).collect(Collectors.reducing(Integer::sum)).get(); //40

3.3.2 Collectors.toList() 解析

    1.  
      //toList 源码
    2.  
      public static <T> Collector<T, ?, List<T>> toList() {
    3.  
      return new CollectorImpl<>((Supplier<List<T>>) ArrayList::new, List::add,
    4.  
      (left, right) -> {
    5.  
      left.addAll(right);
    6.  
      return left;
    7.  
      }, CH_ID);
    8.  
      }
    9.  
       
    10.  
      //为了更好地理解,我们转化一下源码中的lambda表达式
    11.  
      public <T> Collector<T, ?, List<T>> toList() {
    12.  
      Supplier<List<T>> supplier = () -> new ArrayList();
    13.  
      BiConsumer<List<T>, T> accumulator = (list, t) -> list.add(t);
    14.  
      BinaryOperator<List<T>> combiner = (list1, list2) -> {
    15.  
      list1.addAll(list2);
    16.  
      return list1;
    17.  
      };
    18.  
      Function<List<T>, List<T>> finisher = (list) -> list;
    19.  
      Set<Collector.Characteristics> characteristics = Collections.unmodifiableSet(EnumSet.of(Collector.Characteristics.IDENTITY_FINISH));
    20.  
       
    21.  
      return new Collector<T, List<T>, List<T>>() {
    22.  
      @Override
    23.  
      public Supplier supplier() {
    24.  
      return supplier;
    25.  
      }
    26.  
       
    27.  
      @Override
    28.  
      public BiConsumer accumulator() {
    29.  
      return accumulator;
    30.  
      }
    31.  
       
    32.  
      @Override
    33.  
      public BinaryOperator combiner() {
    34.  
      return combiner;
    35.  
      }
    36.  
       
    37.  
      @Override
    38.  
      public Function finisher() {
    39.  
      return finisher;
    40.  
      }
    41.  
       
    42.  
      @Override
    43.  
      public Set<Characteristics> characteristics() {
    44.  
      return characteristics;
    45.  
      }
    46.  
      };
    47.  
       
    48.  
posted on 2021-01-27 13:29  今天也是阳光正好  阅读(112)  评论(0编辑  收藏  举报