from sklearn.datasets import make_classification创建分类数据集
make_classification创建用于分类的数据集,官方文档
例子:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
|
### 创建模型 def create_model(): # 生成数据 from sklearn.datasets import make_classification X, y = make_classification(n_samples = 10000 , # 样本个数 n_features = 25 , # 特征个数 n_informative = 3 , # 有效特征个数 n_redundant = 2 , # 冗余特征个数(有效特征的随机组合) n_repeated = 0 , # 重复特征个数(有效特征和冗余特征的随机组合) n_classes = 3 , # 样本类别 n_clusters_per_class = 1 , # 簇的个数 random_state = 0 ) print ( "原始特征维度" ,X.shape) # 读取数据 print ( "读取数据" ) #import pandas as pd #data = pd.read_csv(datapath) # 数据划分 print ( "数据划分" ) from sklearn.model_selection import train_test_split global x_train,x_valid,x_test,y_train,y_valid,y_test x_train,x_test,y_train,y_test = train_test_split(X,y,random_state = 33 ,test_size = 0.25 ) x_train,x_valid,y_train,y_valid = train_test_split(x_train,y_train,random_state = 33 ,test_size = 0.25 ) # 创建模型 print ( "创建模型" ) from sklearn.linear_model import LogisticRegression global model model = LogisticRegression(penalty = 'l2' ).fit(x_train,y_train) ### 保存模型 def save_model(): print ( "保存模型" ) from sklearn.externals import joblib joblib.dump(model, 'model.pkl' ) ### 模型验证 def validate_model(): print ( "模型验证" ) print (model.score(x_valid,y_valid)) ### 模型预测 def predict_model(): print ( "模型预测" ) global pred pred = model.predict_proba(x_test) print (pred) if __name__ = = "__main__" : create_model() save_model() validate_model() predict_model() |
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 地球OL攻略 —— 某应届生求职总结
· 周边上新:园子的第一款马克杯温暖上架
· Open-Sora 2.0 重磅开源!
· 提示词工程——AI应用必不可少的技术
· .NET周刊【3月第1期 2025-03-02】
2020-02-25 增值税专用发票联次