pwnable.kr memcpy之write up

  1 // compiled with : gcc -o memcpy memcpy.c -m32 -lm
  2 #include <stdio.h>
  3 #include <string.h>
  4 #include <stdlib.h>
  5 #include <signal.h>
  6 #include <unistd.h>
  7 #include <sys/mman.h>
  8 #include <math.h>
  9 
 10 unsigned long long rdtsc(){
 11         asm("rdtsc");
 12 }
 13 
 14 char* slow_memcpy(char* dest, const char* src, size_t len){
 15     int i;
 16     for (i=0; i<len; i++) {
 17         dest[i] = src[i];
 18     }
 19     return dest;
 20 }
 21 
 22 char* fast_memcpy(char* dest, const char* src, size_t len){
 23     size_t i;
 24     // 64-byte block fast copy
 25     if(len >= 64){
 26         i = len / 64;
 27         len &= (64-1);
 28         while(i-- > 0){
 29             __asm__ __volatile__ (
 30             "movdqa (%0), %%xmm0\n"
 31             "movdqa 16(%0), %%xmm1\n"
 32             "movdqa 32(%0), %%xmm2\n"
 33             "movdqa 48(%0), %%xmm3\n"
 34             "movntps %%xmm0, (%1)\n"
 35             "movntps %%xmm1, 16(%1)\n"
 36             "movntps %%xmm2, 32(%1)\n"
 37             "movntps %%xmm3, 48(%1)\n"
 38             ::"r"(src),"r"(dest):"memory");
 39             dest += 64;
 40             src += 64;
 41         }
 42     }
 43 
 44     // byte-to-byte slow copy
 45     if(len) slow_memcpy(dest, src, len);
 46     return dest;
 47 }
 48 
 49 int main(void){
 50 
 51     setvbuf(stdout, 0, _IONBF, 0);
 52     setvbuf(stdin, 0, _IOLBF, 0);
 53 
 54     printf("Hey, I have a boring assignment for CS class.. :(\n");
 55     printf("The assignment is simple.\n");
 56 
 57     printf("-----------------------------------------------------\n");
 58     printf("- What is the best implementation of memcpy?        -\n");
 59     printf("- 1. implement your own slow/fast version of memcpy -\n");
 60     printf("- 2. compare them with various size of data         -\n");
 61     printf("- 3. conclude your experiment and submit report     -\n");
 62     printf("-----------------------------------------------------\n");
 63 
 64     printf("This time, just help me out with my experiment and get flag\n");
 65     printf("No fancy hacking, I promise :D\n");
 66 
 67     unsigned long long t1, t2;
 68     int e;
 69     char* src;
 70     char* dest;
 71     unsigned int low, high;
 72     unsigned int size;
 73     // allocate memory
 74     char* cache1 = mmap(0, 0x4000, 7, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
 75     char* cache2 = mmap(0, 0x4000, 7, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
 76     src = mmap(0, 0x2000, 7, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
 77 
 78     size_t sizes[10];
 79     int i=0;
 80 
 81     // setup experiment parameters
 82     for(e=4; e<14; e++){    // 2^13 = 8K
 83         low = pow(2,e-1);
 84         high = pow(2,e);
 85         printf("specify the memcpy amount between %d ~ %d : ", low, high);
 86         scanf("%d", &size);
 87         if( size < low || size > high ){
 88             printf("don't mess with the experiment.\n");
 89             exit(0);
 90         }
 91         sizes[i++] = size;
 92     }
 93 
 94     sleep(1);
 95     printf("ok, lets run the experiment with your configuration\n");
 96     sleep(1);
 97 
 98     // run experiment
 99     for(i=0; i<10; i++){
100         size = sizes[i];
101         printf("experiment %d : memcpy with buffer size %d\n", i+1, size);
102         dest = malloc( size );
103 
104         memcpy(cache1, cache2, 0x4000);        // to eliminate cache effect
105         t1 = rdtsc();
106         slow_memcpy(dest, src, size);        // byte-to-byte memcpy
107         t2 = rdtsc();
108         printf("ellapsed CPU cycles for slow_memcpy : %llu\n", t2-t1);
109 
110         memcpy(cache1, cache2, 0x4000);        // to eliminate cache effect
111         t1 = rdtsc();
112         fast_memcpy(dest, src, size);        // block-to-block memcpy
113         t2 = rdtsc();
114         printf("ellapsed CPU cycles for fast_memcpy : %llu\n", t2-t1);
115         printf("\n");
116     }
117 
118     printf("thanks for helping my experiment!\n");
119     printf("flag : ----- erased in this source code -----\n");
120     return 0;
121 }

分析源码:

    size_t sizes[10];
    int i=0;

    // setup experiment parameters
    for(e=4; e<14; e++){    // 2^13 = 8K
        low = pow(2,e-1);
        high = pow(2,e);
        printf("specify the memcpy amount between %d ~ %d : ", low, high);
        scanf("%d", &size);
        if( size < low || size > high ){
            printf("don't mess with the experiment.\n");
            exit(0);
        }
        sizes[i++] = size;
    }

从上代码中分析得到,需要输入2的n次幂和2的n+1次幂之间

// run experiment
    for(i=0; i<10; i++){
        size = sizes[i];
        printf("experiment %d : memcpy with buffer size %d\n", i+1, size);
        dest = malloc( size );

这段代码分析得到,输入size后malloc分配空间,分配的空间大小就是我们输入的size大小。

memcpy(cache1, cache2, 0x4000);        // to eliminate cache effect
        t1 = rdtsc();
        slow_memcpy(dest, src, size);        // byte-to-byte memcpy
        t2 = rdtsc();
        printf("ellapsed CPU cycles for slow_memcpy : %llu\n", t2-t1);

        memcpy(cache1, cache2, 0x4000);        // to eliminate cache effect
        t1 = rdtsc();
        fast_memcpy(dest, src, size);        // block-to-block memcpy
        t2 = rdtsc();
        printf("ellapsed CPU cycles for fast_memcpy : %llu\n", t2-t1);
        printf("\n");
    }

分配空间后,分别用slow_memcpy和fast_memcpy两种方式,对堆块内的数据向另外一个内存地址拷贝,并比较二者时间。那么分析一下slow_memcpy和fast_memcpy:

char* slow_memcpy(char* dest, const char* src, size_t len){
    int i;
    for (i=0; i<len; i++) {
        dest[i] = src[i];
    }
    return dest;
}
char* fast_memcpy(char* dest, const char* src, size_t len){
    size_t i;
    // 64-byte block fast copy
    if(len >= 64){
        i = len / 64;
        len &= (64-1);
        
        while(i-- > 0){
            __asm__ __volatile__ (
            "movdqa (%0), %%xmm0\n"
            "movdqa 16(%0), %%xmm1\n"
            "movdqa 32(%0), %%xmm2\n"
            "movdqa 48(%0), %%xmm3\n"
            "movntps %%xmm0, (%1)\n"
            "movntps %%xmm1, 16(%1)\n"
            "movntps %%xmm2, 32(%1)\n"
            "movntps %%xmm3, 48(%1)\n"
            ::"r"(src),"r"(dest):"memory");
            dest += 64;
            src += 64;
        }
    }
 

slow_memcpy是循环赋值,fast_memcpy是用asm汇编指令movdqa进行拷贝。拷贝结束后输入flag。

根据提示生成可执行程序,然后执行程序看一下:

 那么我们运行程序来看一下:

随便输入发现出错了:

我们用gdb来看,发现了出错的位置:

出错的位置,也就是movntps的执行出了问题,百度了一下movntps的用法:

movntps m128,XMM
m128 <== XMM 直接把XMM中的值送入m128,不经过cache,必须对齐16字节。再参考别人的wp:
malloc分配的堆块大小是以8字节对其的。

假设用户申请的堆块大小是a的话,malloc(a)分配的堆块大小为 8*(int((a+4)/8)+1)。

因此假设第一个malloc分配地址是16字节对齐的,则每次请求大小为16字节对齐的数据块即可成功运行结束。可以用脚本来算一下:

# coidng  = utf-8
while(1):
    a = raw_input()
    a = int(a)
    if ((a+4)%16>=9) or ((a+4)%16==0):
        print a," is true"
    else:
        print a," is false"

根据脚本算出来的数,我们输入得到flag:

memcpy@ubuntu:~$ ls
memcpy.c  readme
memcpy@ubuntu:~$ cat readme
the compiled binary of "memcpy.c" source code (with real flag) will be executed under memcpy_pwn privilege if you connect to port 9022.
execute the binary by connecting to daemon(nc 0 9022).

memcpy@ubuntu:~$ nc o 9022
nc: getaddrinfo: Name or service not known
memcpy@ubuntu:~$ nc 0 9022
Hey, I have a boring assignment for CS class.. :(
The assignment is simple.
-----------------------------------------------------
- What is the best implementation of memcpy?        -
- 1. implement your own slow/fast version of memcpy -
- 2. compare them with various size of data         -
- 3. conclude your experiment and submit report     -
-----------------------------------------------------
This time, just help me out with my experiment and get flag
No fancy hacking, I promise :D
specify the memcpy amount between 8 ~ 16 : 9
specify the memcpy amount between 16 ~ 32 : 21
specify the memcpy amount between 32 ~ 64 : 40
specify the memcpy amount between 64 ~ 128 : 70
specify the memcpy amount between 128 ~ 256 : 135
specify the memcpy amount between 256 ~ 512 : 265
specify the memcpy amount between 512 ~ 1024 : 520
specify the memcpy amount between 1024 ~ 2048 : 1030
specify the memcpy amount between 2048 ~ 4096 : 2055
specify the memcpy amount between 4096 ~ 8192 : 5210
ok, lets run the experiment with your configuration
experiment 1 : memcpy with buffer size 9
ellapsed CPU cycles for slow_memcpy : 1497
ellapsed CPU cycles for fast_memcpy : 438

experiment 2 : memcpy with buffer size 21
ellapsed CPU cycles for slow_memcpy : 384
ellapsed CPU cycles for fast_memcpy : 411

experiment 3 : memcpy with buffer size 40
ellapsed CPU cycles for slow_memcpy : 636
ellapsed CPU cycles for fast_memcpy : 672

experiment 4 : memcpy with buffer size 70
ellapsed CPU cycles for slow_memcpy : 1134
ellapsed CPU cycles for fast_memcpy : 288

experiment 5 : memcpy with buffer size 135
ellapsed CPU cycles for slow_memcpy : 1938
ellapsed CPU cycles for fast_memcpy : 237

experiment 6 : memcpy with buffer size 265
ellapsed CPU cycles for slow_memcpy : 3633
ellapsed CPU cycles for fast_memcpy : 291

experiment 7 : memcpy with buffer size 520
ellapsed CPU cycles for slow_memcpy : 7287
ellapsed CPU cycles for fast_memcpy : 342

experiment 8 : memcpy with buffer size 1030
ellapsed CPU cycles for slow_memcpy : 13860
ellapsed CPU cycles for fast_memcpy : 441

experiment 9 : memcpy with buffer size 2055
ellapsed CPU cycles for slow_memcpy : 27561
ellapsed CPU cycles for fast_memcpy : 984

experiment 10 : memcpy with buffer size 5210
ellapsed CPU cycles for slow_memcpy : 72930
ellapsed CPU cycles for fast_memcpy : 2628

thanks for helping my experiment!
flag : 1_w4nn4_br34K_th3_m3m0ry_4lignm3nt

 

posted @ 2017-08-16 10:55  S_s_s  阅读(877)  评论(0编辑  收藏  举报