CentOS7 安装Nvidia Tesla T4驱动 CUDA CUDNN
显卡为 Nvidia Tesla T4
前置
安装gcc编译环境以及内核相关的包
# 添加阿里云的安装源
curl -o /etc/yum.repos.d/epel.repo http://mirrors.aliyun.com/repo/epel-7.repo curl -o /etc/yum.repos.d/CentOS-Base.repo https://mirrors.aliyun.com/repo/Centos-7.repo sed -i -e '/mirrors.cloud.aliyuncs.com/d' -e '/mirrors.aliyuncs.com/d' /etc/yum.repos.d/CentOS-Base.repo
# 安装基础环境
yum -y install apr autoconf automake bash bash-completion bind-utils bzip2 bzip2-devel chrony cmake coreutils curl curl-devel dbus dbus-libs dhcp-common dos2unix e2fsprogs e2fsprogs-devel file file-libs freetype freetype-devel gcc gcc-c++ gdb glib2 glib2-devel glibc glibc-devel gmp gmp-devel gnupg iotop kernel kernel-devel kernel-doc kernel-firmware kernel-headers krb5-devel libaio-devel libcurl libcurl-devel libevent libevent-devel libffi-devel libidn libidn-devel libjpeg libjpeg-devel libmcrypt libmcrypt-devel libpng libpng-devel libxml2 libxml2-devel libxslt libxslt-devel libzip libzip-devel lrzsz lsof make microcode_ctl mysql mysql-devel ncurses ncurses-devel net-snmp net-snmp-libs net-snmp-utils net-tools nfs-utils nss nss-sysinit nss-tools openldap-clients openldap-devel openssh openssh-clients openssh-server openssl openssl-devel patch policycoreutils polkit procps readline-devel rpm rpm-build rpm-libs rsync sos sshpass strace sysstat tar tmux tree unzip uuid uuid-devel vim wget yum-utils zip zlib* jq
# 时间同步
systemctl start chronyd && systemctl enable chronyd
# 重启
reboot
# 整体升级
yum update -y
# 再次重启
reboot
检查
注意:安装内核包时需要先检查一下当前内核版本是否与所要安装的kernel-devel/kernel-doc/kernel-headers的版本一致,请务必保持两者版本一致,否则后续的编译过程会出问题。
[root@localhost opt]# uname -a Linux localhost 3.10.0-1160.31.1.el7.x86_64 #1 SMP Thu Jun 10 13:32:12 UTC 2021 x86_64 x86_64 x86_64 GNU/Linux [root@localhost opt]# yum list | grep kernel- kernel-devel.x86_64 3.10.0-1160.31.1.el7 @updates kernel-doc.noarch 3.10.0-1160.31.1.el7 @updates kernel-headers.x86_64 3.10.0-1160.31.1.el7 @updates kernel-tools.x86_64 3.10.0-1160.31.1.el7 @updates kernel-tools-libs.x86_64 3.10.0-1160.31.1.el7 @updates kernel-abi-whitelists.noarch 3.10.0-1160.31.1.el7 updates kernel-debug.x86_64 3.10.0-1160.31.1.el7 updates kernel-debug-devel.x86_64 3.10.0-1160.31.1.el7 updates kernel-tools-libs-devel.x86_64 3.10.0-1160.31.1.el7 updates
两种方法可以解决版本不一致的问题:
方法一、升级内核版本,具体升级方法请自行百度, 可以不用设为默认启动内核;
方法二、安装与内核版本一致的kernel-devel/kernel-doc/kernel-headers,例如:
yum install "kernel-devel-uname-r == $(uname -r)"
安装显卡驱动
下载
https://www.nvidia.cn/Download/index.aspx?lang=cn
查看支持显卡的驱动最新版本及下载,下载之后是.run后缀。然后上传到服务器任意位置即可
准备
禁用系统默认安装的 nouveau 驱动
# 修改配置 echo -e "blacklist nouveau\noptions nouveau modeset=0" > /etc/modprobe.d/blacklist.conf # 备份原来的镜像文件 cp /boot/initramfs-$(uname -r).img /boot/initramfs-$(uname -r).img.bak # 重建新镜像文件 sudo dracut --force # 重启 reboot # 查看nouveau是否启动,如果结果为空即为禁用成功 lsmod | grep nouveau
安装DKMS模块
DKMS全称是DynamicKernel ModuleSupport,它可以帮我们维护内核外的驱动程序,在内核版本变动之后可以自动重新生成新的模块。
yum -y install dkms
安装
执行以下命令进行安装,文件名替换为自己的。
sudo sh NVIDIA-Linux-x86_64-410.129-diagnostic.run -no-x-check -no-nouveau-check -no-opengl-files
# -no-x-check #安装驱动时关闭X服务 # -no-nouveau-check #安装驱动时禁用nouveau # -no-opengl-files #只安装驱动文件,不安装OpenGL文件
按照安装提示进行安装,一路点yes、ok
安装完之后输入以下命令 ,显示如下:
[root@localhost opt]# nvidia-smi Wed Jul 7 11:11:33 2021 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 410.129 Driver Version: 410.129 CUDA Version: 10.0 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | |===============================+======================+======================| | 0 Tesla T4 Off | 00000000:41:00.0 Off | 0 | | N/A 94C P0 36W / 70W | 0MiB / 15079MiB | 0% Default | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: GPU Memory | | GPU PID Type Process name Usage | |=============================================================================| | No running processes found | +-----------------------------------------------------------------------------+
安装CUDA
安装前检查
1、确定已经安装NVIDIA显卡
[root@localhost opt]# lspci | grep -i nvidia 41:00.0 3D controller: NVIDIA Corporation TU104GL [Tesla T4] (rev a1)
2、确认安装gcc,如果没有安装需要安装
[root@localhost opt]# gcc --version gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-44) Copyright © 2015 Free Software Foundation, Inc. 本程序是自由软件;请参看源代码的版权声明。本软件没有任何担保; 包括没有适销性和某一专用目的下的适用性担保。 # yum -y install gcc gcc-c++
3、禁用Nouveau
# 没有输出就是已经禁用了Nouveau # 如果没有禁用, 看文档上面的禁用Nouveau [root@localhost opt]# lsmod | grep nouveau [root@localhost opt]#
4、
[root@localhost opt]# systemctl set-default multi-user.target Removed symlink /etc/systemd/system/default.target. Created symlink from /etc/systemd/system/default.target to /usr/lib/systemd/system/multi-user.target.
安装
此处的安装环境为离线环境,需要先下载cuda安装文件,安装文件可以去官网地址下载对应的系统版本,官网下载地址:https://developer.nvidia.com/cuda-toolkit-archive
CUDA版本按照自己的需求选择即可, 这里我选择的安装类型为 runfile(local)
wget https://developer.download.nvidia.com/compute/cuda/10.1/Prod/local_installers/cuda_10.1.243_418.87.00_linux.run sudo sh cuda_10.1.243_418.87.00_linux.run
接着,会出现安装界面,输入accept,
第二个界面, 直接选择install
安装后脚本输出, 临时保存一下, 后面需要:
=========== = Summary = =========== Driver: Installed Toolkit: Installed in /usr/local/cuda-10.1/ Samples: Installed in /root/, but missing recommended libraries Please make sure that - PATH includes /usr/local/cuda-10.1/bin - LD_LIBRARY_PATH includes /usr/local/cuda-10.1/lib64, or, add /usr/local/cuda-10.1/lib64 to /etc/ld.so.conf andrun ldconfig as root To uninstall the CUDA Toolkit, run cuda-uninstaller in /usr/local/cuda-10.1/bin To uninstall the NVIDIA Driver, run nvidia-uninstall Please see CUDA_Installation_Guide_Linux.pdf in /usr/local/cuda-10.1/doc/pdf for detailed information on setting upCUDA. Logfile is /var/log/cuda-installer.log
添加CUDA进入环境变量
# 需要按照自己的cuda安装脚本输出来更改 [root@localhost cuda-10.1]# tail -5 /etc/profile PATH=$PATH:/usr/local/cuda-10.1/bin/ LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-10.1/lib64/ export PATH export LD_LIBRARY_PATH [root@localhost cuda-10.1]# source /etc/profile
验证
[root@localhost cuda-10.1]# nvcc -V nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2019 NVIDIA Corporation Built on Sun_Jul_28_19:07:16_PDT_2019 Cuda compilation tools, release 10.1, V10.1.243 [root@localhost NVIDIA_CUDA-10.1_Samples]# cd /root/NVIDIA_CUDA-10.1_Samples [root@localhost NVIDIA_CUDA-10.1_Samples]# make [root@localhost NVIDIA_CUDA-10.1_Samples]# cd 1_Utilities/deviceQuery [root@localhost deviceQuery]# ./deviceQuery ./deviceQuery Starting... CUDA Device Query (Runtime API) version (CUDART static linking) Detected 1 CUDA Capable device(s) Device 0: "Tesla T4" CUDA Driver Version / Runtime Version 10.1 / 10.1 CUDA Capability Major/Minor version number: 7.5 Total amount of global memory: 15080 MBytes (15812263936 bytes) (40) Multiprocessors, ( 64) CUDA Cores/MP: 2560 CUDA Cores GPU Max Clock rate: 1590 MHz (1.59 GHz) Memory Clock rate: 5001 Mhz Memory Bus Width: 256-bit L2 Cache Size: 4194304 bytes Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384) Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers Total amount of constant memory: 65536 bytes Total amount of shared memory per block: 49152 bytes Total number of registers available per block: 65536 Warp size: 32 Maximum number of threads per multiprocessor: 1024 Maximum number of threads per block: 1024 Max dimension size of a thread block (x,y,z): (1024, 1024, 64) Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535) Maximum memory pitch: 2147483647 bytes Texture alignment: 512 bytes Concurrent copy and kernel execution: Yes with 3 copy engine(s) Run time limit on kernels: No Integrated GPU sharing Host Memory: No Support host page-locked memory mapping: Yes Alignment requirement for Surfaces: Yes Device has ECC support: Enabled Device supports Unified Addressing (UVA): Yes Device supports Compute Preemption: Yes Supports Cooperative Kernel Launch: Yes Supports MultiDevice Co-op Kernel Launch: Yes Device PCI Domain ID / Bus ID / location ID: 0 / 65 / 0 Compute Mode: < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) > deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 10.1, CUDA Runtime Version = 10.1, NumDevs = 1 Result = PASS
主要关注 Result = PASS 代表测试通过
安装cuDNN
下载
从官网上(https://developer.nvidia.com/rdp/cudnn-archive)下载相关版本的CUDNN(需要先注册账号才能下载):
注意:要选择CUDA相对应版本的。
安装
上传并解压
[root@localhost opt]# cd /opt/ [root@localhost opt]# tar xzvf cudnn-10.1-linux-x64-v7.6.5.32.tgz cuda/include/cudnn.h cuda/NVIDIA_SLA_cuDNN_Support.txt cuda/lib64/libcudnn.so cuda/lib64/libcudnn.so.7 cuda/lib64/libcudnn.so.7.6.5 cuda/lib64/libcudnn_static.a [root@localhost opt]# cp cuda/include/cudnn.h /usr/local/cuda/include [root@localhost opt]# cp cuda/lib64/libcudnn* /usr/local/cuda/lib64 [root@localhost opt]# chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn* [root@localhost opt]# chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*