[Alibaba微服务技术入门]_Sentinel系统自适应限流_第15讲

Sentinel系统自适应限流官方文档:https://github.com/alibaba/Sentinel/wiki/%E7%B3%BB%E7%BB%9F%E8%87%AA%E9%80%82%E5%BA%94%E9%99%90%E6%B5%81

简介:

Sentinel 系统自适应限流从整体维度对应用入口流量进行控制,结合应用的 Load、CPU 使用率、总体平均 RT、入口 QPS 和并发线程数等几个维度的监控指标,通过自适应的流控策略,让系统的入口流量和系统的负载达到一个平衡,让系统尽可能跑在最大吞吐量的同时保证系统整体的稳定性

背景:

在开始之前,我们先了解一下系统保护的目的:

  • 保证系统不被拖垮
  • 在系统稳定的前提下,保持系统的吞吐量

长期以来,系统保护的思路是根据硬指标,即系统的负载 (load1) 来做系统过载保护。当系统负载高于某个阈值,就禁止或者减少流量的进入;当 load 开始好转,则恢复流量的进入。这个思路给我们带来了不可避免的两个问题

  • load 是一个“结果”,如果根据 load 的情况来调节流量的通过率,那么就始终有延迟性。也就意味着通过率的任何调整,都会过一段时间才能看到效果。当前通过率是使 load 恶化的一个动作,那么也至少要过 1 秒之后才能观测到;同理,如果当前通过率调整是让 load 好转的一个动作,也需要 1 秒之后才能继续调整,这样就浪费了系统的处理能力。所以我们看到的曲线,总是会有抖动
  • 恢复慢。想象一下这样的一个场景(真实),出现了这样一个问题,下游应用不可靠,导致应用 RT 很高,从而 load 到了一个很高的点。过了一段时间之后下游应用恢复了,应用 RT 也相应减少。这个时候,其实应该大幅度增大流量的通过率;但是由于这个时候 load 仍然很高,通过率的恢复仍然不高

TCP BBR 的思想给了我们一个很大的启发。我们应该根据系统能够处理的请求,和允许进来的请求,来做平衡,而不是根据一个间接的指标(系统 load)来做限流。最终我们追求的目标是 在系统不被拖垮的情况下,提高系统的吞吐率,而不是 load 一定要到低于某个阈值。如果我们还是按照固有的思维,超过特定的 load 就禁止流量进入,系统 load 恢复就放开流量,这样做的结果是无论我们怎么调参数,调比例,都是按照果来调节因,都无法取得良好的效果

Sentinel 在系统自适应保护的做法是,用 load1 作为启动自适应保护的因子,而允许通过的流量由处理请求的能力,即请求的响应时间以及当前系统正在处理的请求速率来决定

系统规则:

系统保护规则是从应用级别的入口流量进行控制,从单台机器的 load、CPU 使用率、平均 RT、入口 QPS 和并发线程数等几个维度监控应用指标,让系统尽可能跑在最大吞吐量的同时保证系统整体的稳定性

系统保护规则是应用整体维度的,而不是资源维度的,并且仅对入口流量生效。入口流量指的是进入应用的流量(EntryType.IN),比如 Web 服务或 Dubbo 服务端接收的请求,都属于入口流量

系统规则支持以下的模式:

  • Load 自适应(仅对 Linux/Unix-like 机器生效):系统的 load1 作为启发指标,进行自适应系统保护。当系统 load1 超过设定的启发值,且系统当前的并发线程数超过估算的系统容量时才会触发系统保护(BBR 阶段)。系统容量由系统的 maxQps * minRt 估算得出。设定参考值一般是 CPU cores * 2.5。
  • CPU usage(1.5.0+ 版本):当系统 CPU 使用率超过阈值即触发系统保护(取值范围 0.0-1.0),比较灵敏。
  • 平均 RT:当单台机器上所有入口流量的平均 RT 达到阈值即触发系统保护,单位是毫秒。
  • 并发线程数:当单台机器上所有入口流量的并发线程数达到阈值即触发系统保护。
  • 入口 QPS:当单台机器上所有入口流量的 QPS 达到阈值即触发系统保护。

原理:

我们把系统处理请求的过程想象为一个水管,到来的请求是往这个水管灌水,当系统处理顺畅的时候,请求不需要排队,直接从水管中穿过,这个请求的RT是最短的;反之,当请求堆积的时候,那么处理请求的时间则会变为:排队时间 + 最短处理时间

 

posted @ 2021-11-18 16:44  子墨老师  阅读(59)  评论(0编辑  收藏  举报