Ubuntu18.04+CUDA+CUDNN+Pytorch环境配置

Ubuntu18.04+CUDA+CUDNN+Pytorch环境配置

CUDA

  • 打开nvidia-smi查看当前显卡驱动版本号,根据版本号下载对应的CUDA
  • CUDA官方下载链接为 https://developer.nvidia.com/cuda-toolkit-archive
  • 直接wget下载即可
  • 利用bash打开安装文件进行安装
  • 其中在安装过程中会提示你安装选项,要将显卡驱动前面对应的X去掉,再进行安装

CUDNN

  • 根据下载的CUDA版本,找到对应的CUDNN
  • 其CUDNN下载需要登陆 链接为 https://developer.nvidia.com/rdp/cudnn-archive
  • 下载cuDNN Library for Linux (x86_64)
  • 对于下载下来的tgz压缩文件,利用tar -xzvf 解压
  • 解压后将文件复制到安装cuda的文件夹中,例如:
sudo cp cuda/include/cudnn.h /usr/local/cuda-11.4/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda-11.4/lib64
sudo chmod a+r /usr/local/cuda-11.4/include/cudnn.h /usr/local/cuda-11.4/lib64/libcudnn*

Conda

conda create -n my_py_env python=3.7
  • 添加国内源,使用北外的源,最近觉得比较好用
conda config --set show_channel_urls yes
conda config --add channels https://mirrors.bfsu.edu.cn/anaconda/pkgs/free/ 
conda config --add channels https://mirrors.bfsu.edu.cn/anaconda/pkgs/main/ 
conda config --add channels https://mirrors.bfsu.edu.cn/anaconda/cloud/conda-forge/ 
conda config --add channels https://mirrors.bfsu.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.bfsu.edu.cn/anaconda/cloud/pytorch/
conda config --add channels https://mirrors.bfsu.edu.cn/anaconda/cloud/bioconda/
  • 根据pytorch官网安装,这里注意conda指令中 -c代表指定channel,如果用官网的指令,可能会走国外源
conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=11.1

检查上述是否安装成功

  • 进入conda环境后,进入python
import torch
print(torch.cuda.is_available())
from torch.backends import  cudnn 
print(cudnn.is_available())

Ubuntu18.04 添加用户

sudo useradd -r -m -s /bin/bash test
sudo passwd test
posted @ 2021-12-01 14:33  Liuyangcode  阅读(472)  评论(0编辑  收藏  举报