排序算法总结
1、直接插入排序
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | def insert_sort(alist): """插入排序""" n = len (alist) for j in range ( 1 ,n): i = j while i > 0 : if alist[i] < alist[i - 1 ]: alist[i],alist[i - 1 ] = alist[i - 1 ],alist[i] i - = 1 else : break if __name__ = = "__main__" : l = [ 451 , 122 , 12 , 455 , 48 , 48 , 524 , 65 , 99 , 1225 ] print (l) insert_sort(l) print (l) |
2、希尔排序
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | #Author:liuyang def shell_sort(alist): """希尔排序""" n = len (alist) gap = n / / 2 while gap > 0 : #插入算法,唯一的区别就是gap for j in range (gap,n): i = j while i > 0 : if alist[i] < alist[i - gap]: alist[i], alist[i - gap] = alist[i - gap], alist[i] i - = gap else : break gap / / = 2 if __name__ = = "__main__" : l = [ 451 , 122 , 12 , 455 , 48 , 48 , 524 , 65 , 99 , 1225 ] print (l) shell_sort(l) print (l) |
3、直接选择排序
1 2 3 4 5 6 7 8 9 10 | # Author:liuyang def select_sort(alist): """选择排序""" n = len (alist) for j in range ( 0 , n - 1 ): # j 0 ~ n-2 min_index = j for i in range (j + 1 , n): if alist[min_index] > alist[i]: min_index = i alist[j], alist[min_index] = alist[min_index], alist[j] |
4、冒泡排序
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | #Author:liuyang def bubble_sort(alist): """冒泡排序""" n = len (alist) for j in range ( 0 ,n - 1 ): #产生0到n-2,一共n-1个数 count = 0 for i in range ( 0 ,n - 1 - j): if alist[i] > alist[i + 1 ]: alist[i],alist[i + 1 ] = alist[i + 1 ],alist[i] count + = 1 if count = = 0 : return # i 0 ~ n-2 range(0,n-1) j = 0 # i 0 ~ n-3 range(0,n-1-1) j = 1 # i 0 ~ n-4 range(0,n-1-2) j = 2 # j = n range(0,n-1-j) if __name__ = = "__main__" : l = [ 451 , 122 , 12 , 455 , 48 , 48 , 524 , 65 , 99 , 1225 ] print (l) bubble_sort(l) print (l) |
5、快速排序
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | #Author:liuyang def quick_sort(alist,first,last): """快速排序""" if first > = last: return mid_value = alist[first] low = first high = last while low < high: while low < high and alist[high] > = mid_value: high - = 1 alist[low] = alist[high] while low < high and alist[low] < mid_value: low + = 1 alist[high] = alist[low] alist[low] = mid_value #对左边进行快速排序 quick_sort(alist,first,low - 1 ) #对右边进行快速排序 quick_sort(alist,high + 1 ,last) if __name__ = = "__main__" : l = [ 451 , 122 , 12 , 455 , 48 , 48 , 524 , 65 , 99 , 1225 ] print (l) quick_sort(l, 0 , len (l) - 1 ) print (l) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | #Author:liuyang def quick_sort(alist): if len (alist) < 2 : return alist #基线条件 else : pivot = alist[ 0 ] less = [i for i in alist[ 1 :] if i < = pivot] #所有小于基准值的子数组 greater = [i for i in alist[ 1 :] if i > pivot] #所有大于基准值的子数组 return quick_sort(less) + [pivot] + quick_sort(greater) if __name__ = = "__main__" : l = [ 451 , 122 , 12 , 455 , 48 , 48 , 524 , 65 , 99 , 1225 ] print (l) print (quick_sort(l)) |
6、归并排序
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | #Author:liuyang def merge_sort(alist): """归并排序""" n = len (alist) if n = = 1 : return alist mid = n / / 2 left_li = merge_sort(alist[:mid]) right_li = merge_sort(alist[mid:]) left_point,right_point = 0 , 0 result = [] while left_point < len (left_li) and right_point < len (right_li): if left_li[left_point] < right_li[right_point]: result.append(left_li[left_point]) left_point + = 1 else : result.append(right_li[right_point]) right_point + = 1 result + = left_li[left_point:] result + = right_li[right_point:] return result if __name__ = = "__main__" : l = [ 451 , 122 , 12 , 455 , 48 , 48 , 524 , 65 , 99 , 1225 ] print (l) new_list = merge_sort(l) print (l) print (new_list) |
另附大佬实现的各种排序代码(此代码来源于:数据结构与算法 Python语言描述 作者:裘宗燕)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 | """ 排序算法 """ from random import randrange, randint class Record: def __init__( self , key, datum): self .key = key self .datum = datum def __str__( self ): return "R(" + str ( self .key) + ", " + str ( self .datum) + ")" def printR(lst): print ( "[" + ", " .join( map ( str , lst)) + "]" ) #### 简单插入排序 ##def insert_sort(lst) : ## for i in range(1, len(lst)): # 开始时片段[0:1]已排序 ## x = lst[i] ## j = i ## while j > 0 and lst[j-1].key > x.key: ## lst[j] = lst[j-1] # 反序逐个后移元素至确定插入位置 ## j -= 1 ## lst[j] = x ## ## ##def test1(n): ## l1 = [Record(randint(1, 20), i) for i in range(n)] ## printR(l1) ## insert_sort(l1) ## printR(l1) #### 简单选择排序 # def select_sort(lst): # for i in range(len(lst)-1): # k = i # for j in range(i, len(lst)): # if lst[j].key < lst[k].key: # k = j # if i != k: # lst[i], lst[k] = lst[k], lst[i] # # # def test2(n): # l1 = [Record(randint(1, 20), i) for i in range(n)] # printR(l1) # select_sort(l1) # printR(l1) #### 简单起泡排序 ##def bubble_sort(lst): ## for i in range(len(lst)): ## for j in range(1, len(lst)-i): ## if lst[j-1].key > lst[j].key: ## lst[j-1], lst[j] = lst[j], lst[j-1] #### 起泡排序,无逆序时提前结束 # def bubble_sort(lst): # for i in range(len(lst)): # found = False # for j in range(1, len(lst)-i): # if lst[j-1].key > lst[j].key: # lst[j-1], lst[j] = lst[j], lst[j-1] # found = True # if not found: # break # # # def test3(n): # l1 = [Record(randint(1, 20), i) for i in range(n)] # printR(l1) # bubble_sort(l1) # printR(l1) #### 快速排序 # def quick_sort(lst): # def qsort_rec(lst, l, r): # if l >= r: # return # 分段中无记录或只有一个记录 # i, j = l, r # pivot = lst[i] # while i < j: # 找 pivot 的最终位置 # while i < j and lst[j].key >= pivot.key: # j -= 1 # 用 j 向左找小于 pivot 的记录移到左边 # if i < j: # lst[i] = lst[j] # i += 1 # while i < j and lst[i].key <= pivot.key: # i += 1 # 用 i 向右找大于 pivot 的记录移到右边 # if i < j: # lst[j] = lst[i] # j -= 1 # lst[i] = pivot # 将 pivot 存入其最终位置 # qsort_rec(lst, l, i-1) # 递归处理左半区间 # qsort_rec(lst, i+1, r) # 递归处理右半区间 # # qsort_rec(lst, 0, len(lst)-1) # 主函数调用 qsort_rec # # # def test4(n): # l1 = [Record(randint(1, 20), i) for i in range(n)] # printR(l1) # quick_sort(l1) # printR(l1) #### 快速排序的另一种实现 # def quick_sort1(lst): # def qsort(lst, begin, end): # if begin >= end: # return # pivot = lst[begin].key # i = begin # for j in range(begin + 1, end + 1): # if lst[j].key < pivot: # 发现一个小元素 # i += 1 # lst[i], lst[j] = lst[j], lst[i] # 小元素交换到前面 # lst[begin], lst[i] = lst[i], lst[begin] # 枢轴元素就位 # qsort(lst, begin, i - 1) # qsort(lst, i + 1, end) # # qsort(lst, 0, len(lst) - 1) # # # def test4(n): # l1 = [Record(randint(1, 20), i) for i in range(n)] # printR(l1) # quick_sort1(l1) # printR(l1) #### 归并排序 # def merge_sort(lst): # slen, llen = 1, len(lst) # templst = [None] * llen # while slen <= llen: # merge_pass(lst, templst, llen, slen) # slen *= 2 # merge_pass(templst, lst, llen, slen) # 结果存回原位 # slen *= 2 # # # def merge_pass(lfrom, lto, llen, slen): # i = 0 # while i + 2 * slen < llen: # 归并长slen的两段 # merge(lfrom, lto, i, i + slen, i + 2 * slen) # i += 2 * slen # if i + slen < llen: # 剩下两段,后段长度小于slen # merge(lfrom, lto, i, i + slen, llen) # else: # 只剩下一段,复制到表lto # for j in range(i, llen): # lto[j] = lfrom[j] # # # def merge(lfrom, lto, low, m, high): # i, j, k = low, m, low # while i < m and j < high: # 反复复制两段首记录中较小的 # if lfrom[i].key <= lfrom[j].key: # lto[k] = lfrom[i] # i += 1 # else: # lto[k] = lfrom[j] # j += 1 # k += 1 # while i < m: # 复制第一段剩余记录 # lto[k] = lfrom[i] # i += 1 # k += 1 # while j < high: # 复制第二段剩余记录 # lto[k] = lfrom[j] # j += 1 # k += 1 # # # def test5(n): # l1 = [Record(randint(1, 20), i) for i in range(n)] # printR(l1) # merge_sort(l1) # printR(l1) #### 基数排序 #### 假设被排序仍是以记录类型 Record 为元素的表,其中 #### 关键码是数字 0 到 9 的序列(元组),长度 r 为参数 #### 排序中用 10 个 list 存储各关键码元素对应的序列 #### 一遍分配后收集回到原表,r 遍分配和收集完成排序工作 # def radix_sort(lst, r): # rlists = [[] for i in range(10)] # llen = len(lst) # for d in range(-1, -r-1, -1): # for j in range(llen): # rlists[lst[j].key[d]].append(lst[j]) # j = 0 # for i in range(10): # tmp = rlists[i] # for k in range(len(tmp)): # lst[j] = tmp[k] # j += 1 # rlists[i].clear() # # # def test6(n): # lst = [Record(tuple((randrange(10) for j in range(3))), # i) for i in range(n)] # printR(lst) # radix_sort(lst, 3) # printR(lst) # print() # if __name__ == '__main__': # test1(15) |
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· Manus爆火,是硬核还是营销?
· 终于写完轮子一部分:tcp代理 了,记录一下
· 别再用vector<bool>了!Google高级工程师:这可能是STL最大的设计失误
· 单元测试从入门到精通
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了