Dijkstra算法示例程序

输入:一个有向图,顶点个数 n ,然后是每条边的起点,终点,权值。顶点序号从0开始,-1 -1 -1表示结束。

输出:顶点0到其他各顶点的最短路径长度,并输出对应的最短路径。

 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstdlib>
 4 #include <cstring>
 5 #include <cctype>
 6 #include <stack>
 7 #include <queue>
 8 #include <map>
 9 #include <set>
10 #include <vector>
11 #include <cmath>
12 #include <algorithm>
13 #define lson l, m, rt<<1
14 #define rson m+1, r, rt<<1|1
15 using namespace std;
16 typedef long long int LL;
17 const int MAXN =  0x3f3f3f3f;
18 const int  MIN =  -0x3f3f3f3f;
19 const double eps = 1e-9;
20 const int dir[8][2] = {{0,1},{1,0},{0,-1},{-1,0},{-1,1},
21   {1,1},{1,-1},{-1,-1}};
22 const int MAX = 20;
23 int S[MAX], dist[MAX], path[MAX], edge[MAX][MAX];
24 int n;
25 void Dijkstra(int v0) {
26   int i, j, k;
27   for (i = 0; i < n; ++i) {
28     dist[i] = edge[v0][i]; S[i] = 0;
29     if (i != v0 && edge[v0][i] != MAXN) path[i] = v0;
30     else path[i] = -1;
31   }
32   S[v0] = 1; dist[v0] = 0;
33   for (i = 0; i < n-1; ++i) {
34     int Min = MAXN, u = v0;
35     for (j = 0; j < n;++j) {
36       if (S[j] == 0 && dist[j] < Min) {
37         Min = dist[j]; u = j;
38       }
39     }
40     S[u] = 1;
41     for (j = 0; j < n; ++j) {
42       if (S[j] == 0 && edge[u][j] != MAXN) {
43         int tmp = edge[u][j] + dist[u];
44         if (tmp < dist[j]) {
45           dist[j] = tmp; path[j] = u;
46         }
47       }
48     }
49   }
50 }
51 int main(void){
52 #ifndef ONLINE_JUDGE
53   freopen("dijkstra.in", "r", stdin);
54 #endif
55   scanf("%d",&n); 
56   int u, v, w, i, j, k;
57   while (1) {
58     scanf("%d%d%d", &u, &v, &w);
59     if (u == -1 && v == -1 && w == -1) break;
60     edge[u][v] = w;
61   }
62   for (i = 0; i < n;++i) {
63     for (j = 0; j < n; ++j) {
64       if (i == j) edge[i][j] = 0;
65       else if (edge[i][j] == 0) edge[i][j] = MAXN;
66     }
67   }
68   Dijkstra(0);
69   for (i = 1; i < n;++i) {
70     printf("%d\t", dist[i]);
71     int Shortest[MAX]; k = 0;
72     Shortest[k] = i;
73     while (path[Shortest[k]] != 0) {
74       ++k; Shortest[k] = path[Shortest[k-1]];
75     }
76     ++k; Shortest[k] =0;
77     for (j = k; j > 0; --j) {
78       printf("%d->", Shortest[j]);
79     }
80     printf("%d\n", Shortest[0]);
81   }
82 
83   return 0;
84 }

  采用所谓的“倒向追踪”的方法记录最短路径的时候,要注意怎么存储路径。写的时候,这里出现了一个bug。

输出路径的时候,赶脚书上的写法有点儿挫……所以自己又写了一遍。

 

 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstdlib>
 4 #include <cstring>
 5 #include <cctype>
 6 #include <stack>
 7 #include <queue>
 8 #include <map>
 9 #include <set>
10 #include <vector>
11 #include <cmath>
12 #include <algorithm>
13 #define lson l, m, rt<<1
14 #define rson m+1, r, rt<<1|1
15 using namespace std;
16 typedef long long int LL;
17 const int MAXN =  0x7fffffff;
18 const int  MINN =  -0x7fffffff;
19 const double eps = 1e-9;
20 const int dir[8][2] = {{0,1},{1,0},{0,-1},{-1,0},{-1,1},
21   {1,1},{1,-1},{-1,-1}};
22 const int MAX = 200;
23 int edge[MAX][MAX], dist[MAX], path[MAX]; bool S[MAX];
24 int n, m;
25 void Dijkstra(int u0) {
26   int i, j, k, u, Min;
27   for (i = 0; i < n; ++i) {
28     dist[i] = edge[u0][i]; S[i] = false;
29     if (u0!=i && edge[u0][i] != MAXN) path[i] = u0;
30     else path[i]= -1;
31   }
32   S[i] = true; dist[u0] = 0; path[u0] = -1;
33   for (i = 1; i < n; ++i) {
34     u = u0; Min = MAXN;
35     for (j = 0; j < n; ++j) {
36       if (S[j] == false && dist[j] < Min) {
37         Min = dist[j]; u = j;
38       }
39     }
40     S[u] = true;
41     for (j = 0; j < n; ++j) {
42       if (S[j] == false && edge[u][j] != MAXN) {
43         int tmp= edge[u][j] + dist[u];
44         if (tmp < dist[j]) {
45           dist[j] = tmp;
46           path[j] = u;
47         }
48       }
49     }
50   }
51 }
52 
53 int main(void){
54 #ifndef ONLINE_JUDGE
55   freopen("dijkstra.in", "r", stdin);
56 #endif
57   int u, v, w;
58   memset(edge, 0, sizeof(edge));
59   scanf("%d", &n);
60   while (1) {
61     scanf("%d%d%d", &u, &v, &w);
62     if (u == -1 && v == -1 && w == -1) break;
63     edge[u][v] = w;
64   }
65   int i, j, k;
66   for (i = 0; i < n; ++i) {
67     for (j = 0; j < n; ++j) {
68       if (i == j) edge[i][j] = 0;
69       else if(edge[i][j] == 0) edge[i][j] = MAXN;
70     }
71   }
72   int Path[MAX]; Dijkstra(0);
73   for (i = 1; i < n; ++i) {
74     printf("%d\t",dist[i]);
75     k= 0; Path[0] = i; int ho = path[i];
76     while (ho != -1) {
77       Path[++k] = ho; ho = path[ho];
78     }
79     for (j = k; j > 0; --j) printf("%d->", Path[j]);
80     printf("%d\n", Path[0]);
81   }
82 
83   return 0;
84 }

 

  因为做了两道题目,都没有要求输出路径的,所以自己还是写一下输出路径的吧。注意一下,开始标记路径的时候,把和u0相连的标记为u0,其它的不相连的标记为-1.循环结束后,把path[u0]标记为-1,表示起点。Dijkstra算法最后求得的dist[]是u0到每个点的最短距离。

  现在感觉,平时就要有意识地训练一下自己的查错能力,这样,真正比赛的时候,就不会因为找不出来错而着急了。

posted on 2013-05-04 22:16  aries__liu  阅读(309)  评论(0编辑  收藏  举报