hdu 1394 Minimum Inversion Number

Minimum Inversion Number

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 5892    Accepted Submission(s): 3587


Problem Description
The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.

For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:

a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)

You are asked to write a program to find the minimum inversion number out of the above sequences.
 

 

Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
 

 

Output
For each case, output the minimum inversion number on a single line.
 

 

Sample Input
10 1 3 6 9 0 8 5 7 4 2
 

 

Sample Output
16
 
 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstdlib>
 4 #include <cstring>
 5 #include <algorithm>
 6 using namespace std;
 7 #define lson l, m, rt<<1
 8 #define rson m+1, r, rt<<1|1
 9 const int maxn = 5555;
10 int sum[maxn<<2];
11 void PushUP(int rt){
12   sum[rt] = sum[rt<<1] + sum[rt<<1|1];
13 }
14 void build(int l, int r, int rt){
15   if (l == r) {sum[rt] = 0; return;}
16   int m= (l + r) >> 1; build(lson); build(rson); 
17   PushUP(rt);
18 }
19 void update(int p, int l, int r, int rt){
20   if (l == r) {sum[rt]++; return;}
21   int m = (l + r) >> 1;
22   if (p <= m) update(p, lson); else update(p, rson);
23   PushUP(rt);
24 }
25 int query(int L, int R, int l, int r, int rt){
26   if (L <= l && R >= r) {return sum[rt];}
27   int m = (l + r) >> 1, ret = 0;
28   if (L <= m) ret += query(L, R, lson);
29   if (R > m) ret += query(L, R, rson);
30   return ret;
31 }
32 int x[maxn];
33 int main(void){
34 #ifndef ONLINE_JUDGE
35   freopen("hdu1394.in", "r", stdin);
36 #endif
37   int n;
38   while (~scanf("%d", &n)){
39     int sum = 0; build(0, n-1, 1);
40     for (int i = 0; i < n; ++i){
41       scanf("%d", x+i); sum += query(x[i],n-1,0,n-1,1);
42       update(x[i], 0, n-1, 1);
43     }
44     int ret = sum;
45     for (int i = 0; i < n; ++i){
46       sum += n - 1 - x[i] - x[i];
47       ret = min(ret, sum);
48     }
49     printf("%d\n", ret);
50   }
51   return 0;
52 }

学习树状数组做的题目,还是想了一下午,自己模拟一下就知道怎么回事了,其实也不难。至于怎么建树,怎么更新树状数组,自己画一个树状的图就可以理解了。就是先用线段树求出原有序列的逆序数,然后再求出其他排列的逆序数,这里有一个技巧,就是45行到48行的代码,自己体会一下就Ok了,很巧妙的。

posted on 2013-03-02 18:00  aries__liu  阅读(187)  评论(0编辑  收藏  举报