分析NonfairSync加锁/解锁过程
类继承关系:
NonfairSync => Sync => AbstractQueuedSynchronizer
类NonfairSync
final void lock() {
if (compareAndSetState(0, 1))
setExclusiveOwnerThread(Thread.currentThread());
else
acquire(1);
}
分析:
compareAndSetState(0, 1):通过cas操作更新state状态,若成功,则获取到锁,否则,进行排队申请操作acquire
类AbstractQueuedSynchronizer
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
分析:
tryAcquire方法最终实现为:
类Sync
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
通过cas操作更新state状态,若成功,则获取到锁,否则,首先进行排队,
类AbstractQueuedSynchronizer
private Node addWaiter(Node mode) {
Node node = new Node(Thread.currentThread(), mode);
// Try the fast path of enq; backup to full enq on failure
Node pred = tail;
if (pred != null) {
node.prev = pred;
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
enq(node);
return node;
}
注意:
每一个线程被封装成一个Node节点。
进入enq方法——入队列
private Node enq(final Node node) {
for (;;) {
Node t = tail;
if (t == null) { // Must initialize
if (compareAndSetHead(new Node()))
tail = head;
} else {
node.prev = t;
if (compareAndSetTail(t, node)) {
t.next = node;
return t;
}
}
}
}
分析:
这里针对head和tail属性的赋值均为cas原子操作。
最终模型如图:
如果多线程并发入队,最终结果如图:
注:prev和next分别为Node类的两个属性
入队操作结束后,开始请求队列acquireQueued
类AbstractQueuedSynchronizer
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
分析:
- Node p = node.predecessor()获取node的prev节点
- 如果prev==head节点并且tryAcquire返回true,则更新head节点为当前节点,并退出循环,也就获取到了锁。
- 否则的话,执行shouldParkAfterFailedAcquire和parkAndCheckInterrupt。
- setHead方法来修改head属性,改变队列的头部节点
其中,shouldParkAfterFailedAcquire方法是针对waitStatus属性的修改
private final boolean parkAndCheckInterrupt() {
LockSupport.park(this);
return Thread.interrupted();
}
LockSupport.park(this),使当前线程进入阻塞。
unlock分析
类AbstractQueuedSynchronizer
public final boolean release(int arg) {
if (tryRelease(arg)) {
Node h = head;
if (h != null && h.waitStatus != 0)
unparkSuccessor(h);
return true;
}
return false;
}
类Sync
protected final boolean tryRelease(int releases) {
int c = getState() - releases;
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();
boolean free = false;
if (c == 0) {
free = true;
setExclusiveOwnerThread(null);
}
setState(c);
return free;
}
分析:
主要工作就是设置还原state状态
类AbstractQueuedSynchronizer
private void unparkSuccessor(Node node) {
int ws = node.waitStatus;
if (ws < 0)
compareAndSetWaitStatus(node, ws, 0);
Node s = node.next;
if (s == null || s.waitStatus > 0) {
s = null;
for (Node t = tail; t != null && t != node; t = t.prev)
if (t.waitStatus <= 0)
s = t;
}
if (s != null)
LockSupport.unpark(s.thread);
}
分析:
- 入参node即head节点
- Node s = node.next;即获取到下一个节点,即正在阻塞中的线程
- LockSupport.unpark(s.thread);即激活线程