人工智能必备数学知识学习笔记7:矩阵的应用和更多矩阵相关的高级话题

 

  • 更多变换矩阵

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  • 矩阵旋转变换和矩阵在图形学中的应用

 

 

 

 

 

 

 

 

  

 

 

 

 仿射变换:(百度百科 https://baike.baidu.com/item/%E4%BB%BF%E5%B0%84%E5%8F%98%E6%8D%A2/4289056?fr=aladdin)

仿射变换,又称仿射映射,是指在几何中,一个向量空间进行一次线性变换并接上一个平移,变换为另一个向量空间。

 

 

 图形学:(百度百科:https://baike.baidu.com/item/%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%9B%BE%E5%BD%A2%E5%AD%A6/279486?fr=aladdin)

 

 代码实现:

 

 

 

1.在 main_matrix_transformation.py中编写代码:

 1 import matplotlib.pyplot as plt
 2 import math
 3 from playLA.Matrix import Matrix
 4 from playLA.Vector import Vector
 5 
 6 # 绘图数学库 matplotlib
 7 if __name__ == "__main__":
 8 
 9     points = [[0,0], [0,5], [3,5], [3,4], [1,4],
10               [1,3], [2,3], [2,2], [1,2], [1,0]]
11 
12     x = [point[0] for point in points]
13     y = [point[1] for point in points]
14 
15     # 根据点来绘制图案
16     plt.figure(figsize=(5,5))# 设置绘制窗口的大小(单位:英尺)
17     plt.xlim(-10,10)# 设置窗口坐标系x轴的范围
18     plt.ylim(-10,10)# 设置窗口坐标系y轴的范围
19 
20     plt.plot(x,y)# 输入绘制点
21     #plt.show()# 窗口展示
22 
23     # 将矩阵 P 进行转换
24     P = Matrix(points)
25 
26     #T = Matrix([[2,0],[0,1.5]])   # 将矩阵 P 横坐标扩大2倍,纵坐标扩大1.5倍
27     #T = Matrix([[1,0],[0,-1]])     # 将矩阵 P 进行x轴翻转
28     #T = Matrix([[-1,0],[0,1]])       # 将矩阵 P 进行y轴翻转
29     #T = Matrix([[-1, 0], [0, -1]])  # 将矩阵 P 进行原点对称
30     #T = Matrix([[1, 0.5], [0, 1]])  # 将矩阵 P 进行沿着x轴错切操作
31     #T = Matrix([[1, 0], [0.5, 1]])  # 将矩阵 P 进行沿着y轴错切操作
32 
33     #旋转操作
34     theta = math.pi / 3 #三分之一π,也就是60度
35     T = Matrix([[math.cos(theta),math.sin(theta)], [-math.sin(theta),math.cos(theta)]])
36 
37     P2 = T.dot(P.T()) # T 点乘已转置后的矩阵P
38     plt.plot([P2.col_vector(i)[0] for i in range(P2.col_num())],
39              [P2.col_vector(j)[1] for j in range(P2.col_num())])
40     plt.show()

2.运行 main_matrix_transformation.py 结果为:

根据点来绘制图案

 

 

将矩阵 P 横坐标扩大2倍,纵坐标扩大1.5倍

 

 将矩阵 P 进行x轴翻转
将矩阵 P 进行y轴翻转
将矩阵 P 进行原点对称
将矩阵 P 进行沿着x轴错切操作
将矩阵 P 进行沿着y轴错切操作
旋转操作:三分之一π,也就是60度

 



  • 从缩放变换到单位矩阵

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 非方形矩阵:需要单位矩阵的列数等于长方形矩阵的行数

 

 



  • 矩阵的逆

 

 

 

 

 

 

 

 

 

 

 

 

 代码实现:

 

 1.在Matrix.py编写代码:单位矩阵类方法:返回一个n行n列的单位矩阵

 

  1 #矩阵类
  2 from playLA.Vector import Vector
  3 
  4 
  5 class Matrix:
  6     # 参数2:二维数组
  7     def __init__(self, list2d):
  8         self._values = [row[:] for row in list2d]#将数组变为矩阵
  9 
 10     #矩阵类方法:返回一个r行c列的零矩阵:参数1:为零的类对象
 11     @classmethod
 12     def zero(cls,r,c):
 13         return cls([[0] * c for _ in range(r)]) #创建一个r行c列为零的一个列表
 14 
 15     #单位矩阵类方法:返回一个n行n列的单位矩阵
 16     @classmethod
 17     def identity(cls, n):
 18         m = [[0] * n for _ in range(n)] #此处 m 代表有 n 行,每一行有 n 个 0
 19         for i in range(n):
 20             m[i][i] = 1  #此处代表将矩阵 m 的 第i行的第i个元素赋值为1
 21         return cls(m)
 22 
 23     #返回矩阵的转置矩阵
 24     def T(self):
 25         #将每一行的相同位置(每一列)元素提取出来变为行组成新的矩阵
 26         return Matrix([[e for e in self.col_vector(i)]
 27                        for i in range(self.col_num())])
 28 
 29     #返回两个矩阵的加法结果
 30     def __add__(self, another):
 31         # 校验两个矩阵的形状为一致(行数、列数一致)
 32         assert self.shape() == another.shape(), \
 33             "Error in adding. Shape of matrix must be same."
 34         # 根据矩阵的加法公式:两个矩阵对应的每一行的每一个元素相加,获得新的矩阵(遍历两个矩阵对应的每一个行每个元素进行相加<第二步>,外部再遍历该矩阵的行数(循环的次数)<第一步>)
 35         return Matrix([[a+b for a,b in zip(self.row_vector(i),another.row_vector(i))]
 36                        for i in range(self.row_num())])
 37 
 38     # 返回两个矩阵的减法结果
 39     def __sub__(self, another):
 40         assert self.shape() == another.shape(), \
 41             "Error in subtracting. Shape of matrix must be same."
 42         return Matrix([[a - b for a, b in zip(self.row_vector(i), another.row_vector(i))]
 43                        for i in range(self.row_num())])
 44 
 45     #返回两个矩阵的乘法结果(矩阵乘以矩阵)
 46     def dot(self,another):
 47         if isinstance(another,Vector):#判断是否为向量:矩阵与向量的乘法
 48             assert self.col_num() == len(another),\
 49                 "Error in Matrix_Vector Multiplication." #矩阵与向量的乘法错误
 50             return Vector([self.row_vector(i).dot(another) for i in range(self.row_num())])
 51         if isinstance(another,Matrix):#判断是否为矩阵:矩阵与矩阵的乘法
 52             assert self.col_num() == another.row_num(),\
 53                 "Error in Matrix-Matrix Multiplication." #矩阵与矩阵的乘法错误
 54             # 将矩阵的每一行与另一矩阵的每一列进行向量间的点乘
 55             return Matrix([[self.row_vector(i).dot(another.col_vector(j)) for j in range(another.col_num())]
 56                             for i in range(self.row_num())])
 57 
 58     #返回矩阵的数量乘结果(矩阵乘以数字):self * k
 59     def __mul__(self, k):
 60         #通过遍历每一行的每个元素e后分别乘以k<第一步>,外部再遍历该矩阵的行数(循环的次数)<第二步>
 61         return Matrix([[e * k for e in self.row_vector(i)]
 62                        for i in range(self.row_num())])
 63 
 64     # 返回矩阵的数量乘结果(数字乘以矩阵):k * self
 65     def __rmul__(self, k):
 66         return self * k
 67 
 68     #返回数量除法的结果矩阵:self / k
 69     def __truediv__(self, k):
 70         return (1 / k) * self
 71 
 72     #返回矩阵取正的结果
 73     def __pos__(self):
 74         return 1 * self
 75 
 76     #返回矩阵取负的结果
 77     def __neg__(self):
 78         return -1 * self
 79 
 80     #返回矩阵的第index个行向量
 81     def row_vector(self,index):
 82         return Vector(self._values[index])
 83 
 84     # 返回矩阵的第index个列向量
 85     def col_vector(self, index):
 86         return Vector([row[index] for row in self._values])
 87 
 88     #返回矩阵pos位置的元素(根据元素的位置取元素值) :参数2:元组
 89     def __getitem__(self, pos):
 90         r,c = pos
 91         return self._values[r][c]
 92 
 93     #返回矩阵的元素个数
 94     def size(self):
 95         r,c = self.shape()
 96         return r*c
 97 
 98     #返回矩阵行数
 99     def row_num(self):
100         return self.shape()[0]
101 
102     __len__ = row_num
103 
104     #返回矩阵列数
105     def col_num(self):
106         return self.shape()[1]
107 
108     #返回矩阵形状:(行数,列数)
109     def shape(self):
110         return len(self._values),len(self._values[0])
111 
112     #矩阵展示
113     def __repr__(self):
114         return "Matrix({})".format(self._values)
115 
116     __str__ = __repr__

 

 2.在main-matrix.py编写代码:单位矩阵类方法:返回一个n行n列的单位矩阵

 1 from playLA.Matrix import Matrix
 2 from playLA.Vector import Vector
 3 
 4 if __name__ == "__main__":
 5     #生成一个矩阵
 6     matrix = Matrix([[1,2],[3,4]])
 7     print(matrix)
 8     #矩阵的行数和列数(返回矩阵形状:(行数,列数))
 9     print("matrix.shape = {}".format(matrix.shape()))
10     #返回矩阵的元素个数
11     print("matrix.size = {}".format(matrix.size()))
12     print("len(matrix) = {}".format(len(matrix)))
13     #根据元素的位置取元素值
14     print("matrix[0][0] = {}".format(matrix[0,0]))
15     # 返回矩阵的第index个行向量
16     print("matrix.row_vector = {}".format(matrix.row_vector(0)))
17     # 返回矩阵的第index个列向量
18     print("matrix.col_vector = {}".format(matrix.col_vector(0)))
19 
20     # 返回两个矩阵的加法结果
21     matrix2 = Matrix([[5,6],[7,8]])
22     print("add:{}".format(matrix + matrix2))
23     # 返回两个矩阵的减法结果
24     print("subtract:{}".format(matrix - matrix2))
25     #返回矩阵的数量乘结果(矩阵乘以数字):self * k
26     print("scalar-mul:{}".format(matrix * 2))
27     # 返回矩阵的数量乘结果(数字乘以矩阵):k * self
28     print("scalar-mul:{}".format(2 * matrix))
29     # 零矩阵类方法:返回一个2行3列的零矩阵
30     print("zero_2_3:{}".format(Matrix.zero(2,3)))
31 
32     # 返回两个矩阵的乘法结果(矩阵乘以矩阵)
33     T = Matrix([[1.5,0],[0,2]])
34     p = Vector([5,3])
35     print("T.dot(p) = {}".format(T.dot(p)))
36     P = Matrix([[0,4,5],[0,0,3]])
37     print("T.dot(P) = {}".format(T.dot(P)))
38     print("matrix.dot(matrix2) = {}".format(matrix.dot(matrix2)))
39     print("matrix2.dot(matrix) = {}".format(matrix2.dot(matrix)))
40 
41     # 返回矩阵的转置矩阵
42     print("P.T = {}".format(P.T()))
43 
44     #单位矩阵类方法:返回一个n行n列的单位矩阵
45     I = Matrix.identity(2)
46     print(I)
47     print("A.dot(I) = {}".format(matrix.dot(I)))
48     print("I.dot(A) = {}".format(I.dot(matrix)))

3.运行main_matrix.py结果为:

 1 /Users/liuxiaoming/PycharmProjects/LinearAlgebra/venv/bin/python /Applications/PyCharm.app/Contents/plugins/python/helpers/pydev/pydevconsole.py --mode=client --port=52708
 2 import sys; print('Python %s on %s' % (sys.version, sys.platform))
 3 sys.path.extend(['/Users/liuxiaoming/PycharmProjects/LinearAlgebra'])
 4 PyDev console: starting.
 5 Python 3.8.2 (v3.8.2:7b3ab5921f, Feb 24 2020, 17:52:18) 
 6 [Clang 6.0 (clang-600.0.57)] on darwin
 7 >>> runfile('/Users/liuxiaoming/PycharmProjects/LinearAlgebra/main_matrix.py', wdir='/Users/liuxiaoming/PycharmProjects/LinearAlgebra')
 8 Matrix([[1, 2], [3, 4]])
 9 matrix.shape = (2, 2)
10 matrix.size = 4
11 len(matrix) = 2
12 matrix[0][0] = 1
13 matrix.row_vector = (1, 2)
14 matrix.col_vector = (1, 3)
15 add:Matrix([[6, 8], [10, 12]])
16 subtract:Matrix([[-4, -4], [-4, -4]])
17 scalar-mul:Matrix([[2, 4], [6, 8]])
18 scalar-mul:Matrix([[2, 4], [6, 8]])
19 zero_2_3:Matrix([[0, 0, 0], [0, 0, 0]])
20 T.dot(p) = (7.5, 6)
21 T.dot(P) = Matrix([[0.0, 6.0, 7.5], [0, 0, 6]])
22 matrix.dot(matrix2) = Matrix([[19, 22], [43, 50]])
23 matrix2.dot(matrix) = Matrix([[23, 34], [31, 46]])
24 P.T = Matrix([[0, 0], [4, 0], [5, 3]])
25 Matrix([[1, 0], [0, 1]])
26 A.dot(I) = Matrix([[1, 2], [3, 4]])
27 I.dot(A) = Matrix([[1, 2], [3, 4]])

4. (矩阵再numpy中的应用)文件 main_numpy_vector.py 编写代码:单位矩阵、逆矩阵

 1 import numpy as np
 2 
 3 if __name__ == "__main__":
 4 
 5     #矩阵的创建
 6     A =np.array([[1,2],[3,4]])
 7     print(A)
 8 
 9     #矩阵的属性
10     print(A.shape)#矩阵的形状(行数、列数)
11     print(A.T)#矩阵的转置
12 
13     #获取矩阵的元素(从零开始计算)
14     print(A[1,1])#矩阵的某个元素
15     print(A[0])#矩阵的行向量 等价于 A([0,:])
16     print(A[:,0])#矩阵的列向量(两个索引:索引1:冒号取全部行,索引2:某一列)
17 
18     #矩阵的基本运算
19     B = np.array([[5,6],[7,8]])
20     print("A + B = {}".format(A + B))
21     print("A - b = {}".format(A - B))
22     print("10 * A = {}".format(10 * A))
23     print("A * 10 = {}".format(A * 10))
24     print(A * B)#矩阵中每个元素对应元素相乘而已(不是线性代数中的矩阵相乘)
25     print("A.dot(B) = {}".format(A.dot(B)))#矩阵之间相乘
26 
27     p = np.array([10,100])
28     print("A + p = {}".format(A + p))#此处处理为广播机制处理,也就是每一行对应的每个元素进行相加,但不是线性代数中的矩阵加法
29     print("A + 1 = {}".format(A + 1))#此处处理为广播机制处理,也就是每一行对应的每个元素进行相加,但不是线性代数中的矩阵加法
30 
31     print("A.dot(p) = {}".format(A.dot(p)))#矩阵乘以向量
32 
33     # 单位矩阵
34     I = np.identity(2)
35     print(I)
36     print("A.dot(I) = {}".format(A.dot(I)))
37     print("I.dot(A) = {}".format(I.dot(A)))
38 
39     #逆矩阵
40     invA = np.linalg.inv(A)
41     print(invA)
42     print(invA.dot(A))
43     print(A.dot(invA))
44 
45     # 只有方阵才会有逆矩阵:对于非方阵取逆矩阵时会报错
46     C = np.array([[1,2,3],[4,5,6]])
47     np.linalg.inv(C)

5. 运行文件 main_numpy_vector.py 结果为:

 1 /Users/liuxiaoming/PycharmProjects/LinearAlgebra/venv/bin/python /Users/liuxiaoming/PycharmProjects/LinearAlgebra/playLA/main_numpy_matrix.py
 2 [[1 2]
 3  [3 4]]
 4 (2, 2)
 5 [[1 3]
 6  [2 4]]
 7 4
 8 [1 2]
 9 [1 3]
10 A + B = [[ 6  8]
11  [10 12]]
12 A - b = [[-4 -4]
13  [-4 -4]]
14 10 * A = [[10 20]
15  [30 40]]
16 A * 10 = [[10 20]
17  [30 40]]
18 [[ 5 12]
19  [21 32]]
20 A.dot(B) = [[19 22]
21  [43 50]]
22 A + p = [[ 11 102]
23  [ 13 104]]
24 A + 1 = [[2 3]
25  [4 5]]
26 A.dot(p) = [210 430]
27 [[1. 0.]
28  [0. 1.]]
29 A.dot(I) = [[1. 2.]
30  [3. 4.]]
31 I.dot(A) = [[1. 2.]
32  [3. 4.]]
33 [[-2.   1. ]
34  [ 1.5 -0.5]]
35 [[1.00000000e+00 0.00000000e+00]
36  [1.11022302e-16 1.00000000e+00]]
37 [[1.0000000e+00 0.0000000e+00]
38  [8.8817842e-16 1.0000000e+00]]
39 Traceback (most recent call last):
40   File "/Users/liuxiaoming/PycharmProjects/LinearAlgebra/playLA/main_numpy_matrix.py", line 47, in <module>
41     np.linalg.inv(C)
42   File "<__array_function__ internals>", line 5, in inv
43   File "/Users/liuxiaoming/PycharmProjects/LinearAlgebra/venv/lib/python3.8/site-packages/numpy/linalg/linalg.py", line 541, in inv
44     _assert_stacked_square(a)
45   File "/Users/liuxiaoming/PycharmProjects/LinearAlgebra/venv/lib/python3.8/site-packages/numpy/linalg/linalg.py", line 204, in _assert_stacked_square
46     raise LinAlgError('Last 2 dimensions of the array must be square')
47 numpy.linalg.LinAlgError: Last 2 dimensions of the array must be square
48 
49 Process finished with exit code 1


  • 矩阵的逆的性质

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  • 看待矩阵的关键视角:用矩阵表示空间 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

将原矩阵图形放入一个新的矩阵空间(T)中展示的样子:

 

 

 

 

 

 

 

 



  • 总结:看待矩阵的四个重要视角

 

 

 

 

 

 

 

 

 

 

 

 

posted @ 2020-08-11 15:15  霜井  阅读(822)  评论(0编辑  收藏  举报