红黑树删除的实现
在将红黑树中某个节点删除时,分几个步骤,首先找到该节点的位置,然后删除该节点,最后调整红黑树。
本文代码还存在一个问题没有解决,当连续删除到第3个节点时会出现问题,现在暂时还没找出问题,以后有空慢慢研究。
1、找出要删除的节点
TREE rb_delete_find(TREE r, int d) // find the node that need deleted { NODE *x; x = r; while(x != NULL) { if(x->key == d) break; else if(d < x->key) x = x->left; else x = x->right; } if(x == NULL) { printf("find failed\n", x->key); return NULL; } else { printf("find success, %d\n", x->key); return rb_delete(r, x); } }
2、删除节点
在找到要删除的节点后,根据不同的情形将节点删除。代码如下:
TREE rb_delete(TREE r, NODE *z) { NODE *x, *y = z, *tmp; int y_original_color = y->color; tmp = (TREE)malloc(sizeof(NODE)); tmp->key = -1; tmp->color = 1; tmp->left = NULL; tmp->right = NULL; if(z->left == NULL) { x = z->right; r = rb_delete_node(r, z, z->right); if(x == NULL) { x = tmp; x->p = z->p; z->p->right = x; } } else if(z->right == NULL) { x = z->left; r = rb_delete_node(r, z, z->left); } else //左右孩子都不为空 { y = tree_minimum(z->right); //y要么没有子节点要么只有右孩子 y_original_color = y->color; x = y->right; if(y->p != z) { r = rb_delete_node(r, y, y->right); y->right = z->right; y->right->p = y; } r = rb_delete_node(r, z, y); y->left = z->left; y->left->p = y; y->color = z->color; if(NULL == x) { x = tmp; x->p = y; y->right = x; } } // printf("root->key: %d \tx->key: %d\n", r->key, x->key); // printf("root->left: %d \troot->right: %d\n", r->left->key, r->right->key); /**在删除或移动黑色节点时,需要将他的黑色下推给他的孩子节点。若孩子节点为空, 这时将无法将黑色下推。若黑色向上推则会导致黑高的不相等。 在此通过创建临时节点,将其作为叶子节点。叶子节点的颜色为黑色,值为-1. **/ //printf("------------r.key = %d x.key = %d\n",r->key, x->key); //y_original_color保存了移动或删除的节点的颜色,当移动或删除的节点为红色时,红黑树的性质没有被破坏, //而当移动或删除的节点为黑色时,红黑树的性质被破坏了,这是就需要对其进行调整。 if(y_original_color == 1) //1:黑色, 0:红色 { r = rb_delete_fixup(r, x); } return r; }
3、红黑树的调整
当删除或移动的节点为黑色时,需要对红黑树进行调整,以使得其继续保持红黑树的性质。具体的调整过程见上一篇文章。
调整代码如下:
TREE rb_delete_fixup(TREE r, NODE *z) { NODE *x = z, *w; while(x!=r && x->color==1) { if(x == x->p->left) //x is left child { w = x->p->right; if(w!=NULL && w->color == 0) //case 1: w->color=0 { w->color = 1; x->p->color = 0; r = left_rotate(r, x->p); w = x->p->right; } //提取x和w的一个黑色, 上移到x的父节点。从w提出一个黑色后其变成了红色,x还剩一个黑色 if((w->left==NULL ||w->left->color==1) && (w->right==NULL || w->right->color==1)) //case 2: w->color=1 && w.left=1 && w.right=1 { w->color = 0; x = x->p; } else { if(w->right==NULL || w->right->color==1) //case 3: w->color=1 && w.left=0 && w.right=1 { w->left->color = 1; w->color = 0; r = right_rotate(r, w); w = x->p->right; } w->color = x->p->color; //case 4: w->color=1 && w.right=0 x->p->color = 1; w->right->color = 1; r = left_rotate(r, x->p); x = r; } } else //x is right child { w = x->p->left; if(w->color == 0) //case 1 { w->color = 1; x->p->color = 0; r = right_rotate(r, x->p); w = x->p->left; } if((w->left==NULL || w->left->color==1) && (w->right==NULL || w->right->color==1)) //case 2 { w->color = 0; x = x->p; } else { if(w->left==NULL || w->left->color==1) //case 3 { w->color = 0; w->right->color = 1; r = left_rotate(r, w); w = x->p->left; } //case 4 w->color = x->p->color; w->left->color = 1; x->p->color = 1; r = right_rotate(r, x->p); x = r; } } } x->color = 1; return r; }
在以上的过程中还用到了以下函数,
首先是删除节点函数,其代码如下:
/** ** 删除节点x,使用y来代替x节点 **/ TREE rb_delete_node(TREE r, NODE *x, NODE *y) { if(x->p == NULL) { r = y; } else if(x == x->p->left) { x->p->left = y; } else x->p->right = y; if(y != NULL) y->p = x->p; return r; }
其次是查找后继节点的函数,代码如下:
//查找节点z的后继节点 NODE *tree_minimum(NODE *z) { NODE *x = z; while(x->left != NULL) x = x->left; return x; }
其他的如节点的数据结构,树的左旋和右旋的具体实现函数,见红黑树的插入那篇文章。