红黑树删除的实现

在将红黑树中某个节点删除时,分几个步骤,首先找到该节点的位置,然后删除该节点,最后调整红黑树。

本文代码还存在一个问题没有解决,当连续删除到第3个节点时会出现问题,现在暂时还没找出问题,以后有空慢慢研究。

1、找出要删除的节点

TREE rb_delete_find(TREE r, int d)	// find the node that need deleted
{
	NODE *x;
	x = r;
	while(x != NULL)
	{
		if(x->key == d)
			break;
		else if(d < x->key)
			x = x->left;
		else
			x = x->right;
	}
	
	if(x == NULL)
	{
		printf("find failed\n", x->key);
		return NULL;
	}
	else
	{
		printf("find success, %d\n", x->key);
		return rb_delete(r, x);
	}
}

2、删除节点

在找到要删除的节点后,根据不同的情形将节点删除。代码如下:

TREE rb_delete(TREE r, NODE *z)
{
	NODE *x, *y = z, *tmp;
	int y_original_color = y->color;
	
	tmp = (TREE)malloc(sizeof(NODE));
	tmp->key = -1;
	tmp->color = 1;
	tmp->left = NULL;
	tmp->right = NULL;
	
	if(z->left == NULL)
	{
		x = z->right;
		r = rb_delete_node(r, z, z->right);
		if(x == NULL)
		{
			x = tmp;
			x->p = z->p;
			z->p->right = x;
		}
	}
	else if(z->right == NULL)
	{
		x = z->left;
		r = rb_delete_node(r, z, z->left);
		
	}
	else	//左右孩子都不为空 
	{
		y = tree_minimum(z->right);			//y要么没有子节点要么只有右孩子 
		y_original_color = y->color;
		x = y->right;
		
		if(y->p != z)
		{
			r = rb_delete_node(r, y, y->right);
			y->right = z->right;
			y->right->p = y;
		}
		r = rb_delete_node(r, z, y);
		y->left = z->left;
		y->left->p = y;
		y->color = z->color;
		
		if(NULL == x)
		{
			x = tmp;
			x->p = y;
			y->right = x;
		}
	}
//	printf("root->key: %d \tx->key: %d\n", r->key, x->key);
//	printf("root->left: %d \troot->right: %d\n", r->left->key, r->right->key);
	/**在删除或移动黑色节点时,需要将他的黑色下推给他的孩子节点。若孩子节点为空,
		这时将无法将黑色下推。若黑色向上推则会导致黑高的不相等。
		在此通过创建临时节点,将其作为叶子节点。叶子节点的颜色为黑色,值为-1. 
	**/ 
	
	//printf("------------r.key = %d   x.key = %d\n",r->key, x->key);
	//y_original_color保存了移动或删除的节点的颜色,当移动或删除的节点为红色时,红黑树的性质没有被破坏,
	//而当移动或删除的节点为黑色时,红黑树的性质被破坏了,这是就需要对其进行调整。 
	if(y_original_color == 1)	//1:黑色, 0:红色  
	{
		r = rb_delete_fixup(r, x);
	}
	
	return r;
}

3、红黑树的调整

当删除或移动的节点为黑色时,需要对红黑树进行调整,以使得其继续保持红黑树的性质。具体的调整过程见上一篇文章。

调整代码如下:

TREE rb_delete_fixup(TREE r, NODE *z)
{
	NODE *x = z, *w;
	
	while(x!=r && x->color==1)
	{
		if(x == x->p->left)		//x is left child
		{
			w = x->p->right;
			if(w!=NULL && w->color == 0)		//case 1: w->color=0
			{
				w->color = 1;
				x->p->color = 0;
				r = left_rotate(r, x->p);
				w = x->p->right;
			}
			
			//提取x和w的一个黑色, 上移到x的父节点。从w提出一个黑色后其变成了红色,x还剩一个黑色 
			if((w->left==NULL ||w->left->color==1) && (w->right==NULL || w->right->color==1))	//case 2: w->color=1 && w.left=1 && w.right=1
			{
				w->color = 0;
				x = x->p;
			}
			else
			{
				if(w->right==NULL || w->right->color==1)						//case 3: w->color=1 && w.left=0 && w.right=1
				{
					w->left->color = 1;
					w->color = 0;
					r = right_rotate(r, w);
					w = x->p->right;
				}
				w->color = x->p->color;						//case 4: w->color=1 && w.right=0
				x->p->color = 1;
				w->right->color = 1;
				r = left_rotate(r, x->p);
				x = r;
			}
		}
		else					//x is right child
		{
			w = x->p->left;
			if(w->color == 0)	//case 1
			{
				w->color = 1;
				x->p->color = 0;
				r = right_rotate(r, x->p);
				w = x->p->left;
			}
			if((w->left==NULL || w->left->color==1) && (w->right==NULL || w->right->color==1))	//case 2
			{
				w->color = 0;
				x = x->p;
			}
			else
			{
				if(w->left==NULL || w->left->color==1)		//case 3
				{
					w->color = 0;
					w->right->color = 1;
					r = left_rotate(r, w);
					w = x->p->left;
				}
											//case 4
				w->color = x->p->color;
				w->left->color = 1;
				x->p->color = 1;
				
				r = right_rotate(r, x->p);
				x = r;
			}
		}
	}
	x->color = 1;
	return r;
}

在以上的过程中还用到了以下函数,

首先是删除节点函数,其代码如下:

/**
**	删除节点x,使用y来代替x节点 
**/
TREE rb_delete_node(TREE r, NODE *x, NODE *y)
{
	if(x->p == NULL)
	{
		r = y;
	}
	else if(x == x->p->left)
	{
		x->p->left = y;
	}
	else 
		x->p->right = y;
	
	if(y != NULL)
		y->p = x->p;
	
	return r;
}

其次是查找后继节点的函数,代码如下:

//查找节点z的后继节点 
NODE *tree_minimum(NODE *z)
{
	NODE *x = z;
	while(x->left != NULL)
		x = x->left;
	
	return x;
}

其他的如节点的数据结构,树的左旋和右旋的具体实现函数,见红黑树的插入那篇文章。


posted @ 2014-11-06 10:20  liuwu265  阅读(400)  评论(0编辑  收藏  举报