洛谷P1220关路灯题解
此题是一个状态转移方程还算比较多的一个区间DP,这个题也能启示我们如果某个状态不能够很好地解决问题,那么不妨试试再加一维,而且如果转移顺序不确定的话,可以试试记忆化搜索,说不定就可以比较容易的写出状态转移方程和状态转移。
状态
如果我们要关掉到的灯,则最后一个关掉的灯就是或者,我们设分别表示最后一个关掉的灯是还是,一定是由来转移过来的,所以我们就可以分类讨论,所以很容易得出
状态转移方程
dp[i][j][0] = min(dp[i][j][0], dp[i + 1][j][0] + (data[i + 1].pos - data[i].pos) * (data[n].sum - data[j].sum + data[i].sum));
dp[i][j][0] = min(dp[i][j][0], dp[i + 1][j][1] + (data[j].pos - data[i].pos) * (data[n].sum - data[j].sum + data[i].sum));
然后就可以按照区间DP的基本思路来求解了。
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
#include <cmath>
#include <cstdlib>
using namespace std;
int n, c;
struct light {
int pow, pos, sum;
}data[100100];
int dp[1010][1010][3];
int main()
{
scanf("%d%d", &n, &c);
for (int i = 1; i <= n; i++)
scanf("%d%d", &data[i].pos, &data[i].pow), data[i].sum = data[i - 1].sum + data[i].pow;
memset(dp, 124, sizeof(dp));
dp[c][c][0] = dp[c][c][1] = 0;
for (int l = 2; l <= n; l++)
for (int i = 1; i + l - 1 <= n; i++)
{
int j = i + l - 1;
dp[i][j][1] = min(dp[i][j][1], dp[i][j - 1][0] + (data[j].pos - data[i].pos) * (data[n].sum - data[j - 1].sum + data[i - 1].sum));
dp[i][j][1] = min(dp[i][j][1], dp[i][j - 1][1] + (data[j].pos - data[j - 1].pos) * (data[n].sum - data[j - 1].sum + data[i - 1].sum)) ;
}
/*
for (int i = 1; i <= n; i++)
for (int j = i; j <= n; j++)
printf("%d %d\n", dp[i][j][0], dp[i][j][1]);
*/
printf("%d", min(dp[1][n][0], dp[1][n][1]));
return 0;
}
【推荐】还在用 ECharts 开发大屏?试试这款永久免费的开源 BI 工具!
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 后端思维之高并发处理方案
· 理解Rust引用及其生命周期标识(下)
· 从二进制到误差:逐行拆解C语言浮点运算中的4008175468544之谜
· .NET制作智能桌面机器人:结合BotSharp智能体框架开发语音交互
· 软件产品开发中常见的10个问题及处理方法
· 2025成都.NET开发者Connect圆满结束
· 后端思维之高并发处理方案
· 千万级大表的优化技巧
· 在 VS Code 中,一键安装 MCP Server!
· 10年+ .NET Coder 心语 ── 继承的思维:从思维模式到架构设计的深度解析