openpose_rknn推理

推理代码 multi-person-openpose_rknn-cam_coco.py

import cv2
import time
import numpy as np
from random import randint
from rknn.api import RKNN
from processing_openpose import extract_parts, draw

rknn = RKNN()

output = 'result_rknn.png'

             
rknn.load_rknn('./coco_quantization_368_654.rknn')
ret = rknn.init_runtime(target='rk1808', target_sub_class='AICS')
if ret != 0:
    print('Init runtime environment failed')
    exit(ret)
print('done')

cap = cv2.VideoCapture(0)

hasFrame, frame = cap.read()

while cv2.waitKey(1) < 0:
    t = time.time()
    hasFrame, frame = cap.read()
    tic = time.time()
    img_image = cv2.imread('E:\\usb_test\\example\\yolov3\\openpose_keras_18key\\640_360.jpg')

    if not hasFrame:
        cv2.waitKey()
        break
    body_parts, all_peaks, subset, candidate = extract_parts(img_image,rknn)
    t4 = time.time()
    canvas = draw(img_image, all_peaks, subset, candidate)
    print("t4",time.time()-t4)
    toc = time.time()
    print('processing time is %.5f' % (toc - tic))
    #
    cv2.imwrite(output, canvas)
    #
    cv2.destroyAllWindows()
      

rknn.release()
View Code

processing_openpose.py

import math

import numpy as np
from scipy.ndimage.filters import gaussian_filter
import cv2
import scipy.io as scio
import util
import time

COCO_BODY_PARTS = ['nose', 'neck',
                   'right_shoulder', ' right_elbow', 'right_wrist',
                   'left_shoulder', 'left_elbow', 'left_wrist',
                   'right_hip', 'right_knee', 'right_ankle',
                   'left_hip', 'left_knee', 'left_ankle',
                   'right_eye', 'left_eye', 'right_ear', 'left_ear', 'background'
                   ]

def extract_parts(input_image,rknn):
    start_time = time.time()
    # Body parts location heatmap, one per part (19)
    heatmap_avg = np.zeros((input_image.shape[0], input_image.shape[1], 19))
    paf_avg = np.zeros((input_image.shape[0], input_image.shape[1], 38))
    #scale = 1.5333333333333334  #552 984
    scale = 1.0222222222222221  #368 656
    image_to_test = cv2.resize(input_image, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
    frame_input = np.transpose(image_to_test, [2, 0, 1])
    #print(frame_input.shape)
    image_to_test_padded, pad = util.pad_right_down_corner(image_to_test, 8,
                                                           128)

    frameWidth = image_to_test.shape[1]
    frameHeight = image_to_test.shape[0]
    inHeight = 368
    inWidth = int((inHeight / frameHeight) * frameWidth)
    #print(frame_input.shape)
    [output] = rknn.inference(inputs=[frame_input], data_format="nchw")
    print(output.shape)
    #kk = output.flatten()
    #st = ''
    #print(len(kk))
    #for x in kk:
    #   st+= ' '+str(x)          
    #with open('t.txt','a') as file_handle:  
    #    file_handle.write(st)     # 写入

    # rknn输出的数组转为1x57x46x46的矩阵
    output_blobs = output.reshape(1, 57, 46, 82)
    
    scio.savemat("stat1.mat", {'A':output_blobs})
    
    #inpBlob = cv2.dnn.blobFromImage(image_to_test, 1.0 / 255, (inWidth, inHeight), (0, 0, 0), swapRB=False, crop=False)

    # required shape (1, width, height, channels)
    #input_img = np.transpose(np.float32(image_to_test_padded[:, :, :, np.newaxis]), (3, 0, 1, 2))
    #print(image_to_test_padded.shape)
    #model.setInput(inpBlob )
    #output_blobs = model.forward()
    output_blobs = output_blobs.transpose([0, 2, 3, 1])
    
    heatmap = output_blobs[0, :, :, 0:19]
    paf =  output_blobs[0, :, :, 19:]
    print("inference time is ",time.time() - start_time)
    #print(heatmap.shape)
    #print(paf.shape)

    heatmap = cv2.resize(heatmap, (0, 0), fx=8, fy=8,
                         interpolation=cv2.INTER_CUBIC)
    heatmap = heatmap[:image_to_test_padded.shape[0] - pad[2], :image_to_test_padded.shape[1] - pad[3], :]
    heatmap = cv2.resize(heatmap, (input_image.shape[1], input_image.shape[0]), interpolation=cv2.INTER_CUBIC)

    #paf = np.squeeze(output_blobs[0])  # output 0 is PAFs
    paf = cv2.resize(paf, (0, 0), fx=8, fy=8,
                     interpolation=cv2.INTER_CUBIC)
    paf = paf[:image_to_test_padded.shape[0] - pad[2], :image_to_test_padded.shape[1] - pad[3], :]
    paf = cv2.resize(paf, (input_image.shape[1], input_image.shape[0]), interpolation=cv2.INTER_CUBIC)
    heatmap_avg = heatmap
    paf_avg = paf

    all_peaks = []
    peak_counter = 0
    t0 = time.time()
    for part in range(18):
        hmap_ori = heatmap_avg[:, :, part]
        hmap = gaussian_filter(hmap_ori, sigma=3)

        # Find the pixel that has maximum value compared to those around it
        hmap_left = np.zeros(hmap.shape)
        hmap_left[1:, :] = hmap[:-1, :]
        hmap_right = np.zeros(hmap.shape)
        hmap_right[:-1, :] = hmap[1:, :]
        hmap_up = np.zeros(hmap.shape)
        hmap_up[:, 1:] = hmap[:, :-1]
        hmap_down = np.zeros(hmap.shape)
        hmap_down[:, :-1] = hmap[:, 1:]

        # reduce needed because there are > 2 arguments
        peaks_binary = np.logical_and.reduce(
            (hmap >= hmap_left, hmap >= hmap_right, hmap >= hmap_up, hmap >= hmap_down, hmap > 0.1))
        peaks = list(zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0]))  # note reverse
        peaks_with_score = [x + (hmap_ori[x[1], x[0]],) for x in peaks]  # add a third element to tuple with score
        idx = range(peak_counter, peak_counter + len(peaks))
        peaks_with_score_and_id = [peaks_with_score[i] + (idx[i],) for i in range(len(idx))]

        all_peaks.append(peaks_with_score_and_id)
        peak_counter += len(peaks)

    connection_all = []
    special_k = []
    mid_num = 10
    #print(len(util.hmapIdx))
    print("t0",time.time()-t0)
    t1 = time.time()
    for k in range(len(util.hmapIdx)):
        score_mid_t = time.time()
        score_mid = paf_avg[:, :, [x - 19 for x in util.hmapIdx[k]]]
        cand_a = all_peaks[util.limbSeq[k][0] - 1]
        cand_b = all_peaks[util.limbSeq[k][1] - 1]
        print("score_mid_t:",time.time()-score_mid_t)#0.14
        n_a = len(cand_a)
        n_b = len(cand_b)
        # index_a, index_b = util.limbSeq[k]
        t1_0 =time.time()
        if n_a != 0 and n_b != 0:
            connection_candidate = []
            print("n_a:%d n_b:%d"%(n_a,n_b))
            t1_i =time.time()
            for i in range(n_a):
                t1_j =time.time()
                for j in range(n_b):
                    
                    vec = np.subtract(cand_b[j][:2], cand_a[i][:2])
                    norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1])
                    
                    # failure case when 2 body parts overlaps
                    if norm == 0:
                        continue
                    vec = np.divide(vec, norm)

                    startend = list(zip(np.linspace(cand_a[i][0], cand_b[j][0], num=mid_num),
                                        np.linspace(cand_a[i][1], cand_b[j][1], num=mid_num)))
                    #print("startend:%d"%(len(startend)))

                    vec_x = np.array(
                        [score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 0]
                         for I in range(len(startend))])
                    vec_y = np.array(
                        [score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 1]
                         for I in range(len(startend))])

                    score_midpts = np.multiply(vec_x, vec[0]) + np.multiply(vec_y, vec[1])
                    score_with_dist_prior = sum(score_midpts) / len(score_midpts) + min(
                        0.5 * input_image.shape[0] / norm - 1, 0)
                    criterion1 = len(np.nonzero(score_midpts > 0.05)[0]) > 0.8 * len(
                        score_midpts)
                    criterion2 = score_with_dist_prior > 0
                    if criterion1 and criterion2:
                        connection_candidate.append([i, j, score_with_dist_prior,
                                                     score_with_dist_prior + cand_a[i][2] + cand_b[j][2]])
                    #print("t1_j:",time.time() - t1_j)
                #print("t1_i:",time.time() - t1_i)
        
            t1_1 = time.time()
            connection_candidate = sorted(connection_candidate, key=lambda x: x[2], reverse=True)
            print("t1_1",time.time() - t1_1)
            connection = np.zeros((0, 5))
            for c in range(len(connection_candidate)):
                i, j, s = connection_candidate[c][0:3]
                if i not in connection[:, 3] and j not in connection[:, 4]:
                    connection = np.vstack([connection, [cand_a[i][3], cand_b[j][3], s, i, j]])
                    if len(connection) >= min(n_a, n_b):
                        break

            connection_all.append(connection)
        else:
            special_k.append(k)
            connection_all.append([])
        print("t1_0",time.time()-t1_0)
    
    # last number in each row is the total parts number of that person
    # the second last number in each row is the score of the overall configuration
    subset = np.empty((0, 20))
    candidate = np.array([item for sublist in all_peaks for item in sublist])
    print("t1",time.time()-t1)
    t2 = time.time()
    for k in range(len(util.hmapIdx)):
        if k not in special_k:
            part_as = connection_all[k][:, 0]
            part_bs = connection_all[k][:, 1]
            index_a, index_b = np.array(util.limbSeq[k]) - 1

            for i in range(len(connection_all[k])):  # = 1:size(temp,1)
                found = 0
                subset_idx = [-1, -1]
                for j in range(len(subset)):  # 1:size(subset,1):
                    if subset[j][index_a] == part_as[i] or subset[j][index_b] == part_bs[i]:
                        subset_idx[found] = j
                        found += 1

                if found == 1:
                    j = subset_idx[0]
                    if subset[j][index_b] != part_bs[i]:
                        subset[j][index_b] = part_bs[i]
                        subset[j][-1] += 1
                        subset[j][-2] += candidate[part_bs[i].astype(int), 2] + connection_all[k][i][2]
                elif found == 2:  # if found 2 and disjoint, merge them
                    j1, j2 = subset_idx
                    membership = ((subset[j1] >= 0).astype(int) + (subset[j2] >= 0).astype(int))[:-2]
                    if len(np.nonzero(membership == 2)[0]) == 0:  # merge
                        subset[j1][:-2] += (subset[j2][:-2] + 1)
                        subset[j1][-2:] += subset[j2][-2:]
                        subset[j1][-2] += connection_all[k][i][2]
                        subset = np.delete(subset, j2, 0)
                    else:  # as like found == 1
                        subset[j1][index_b] = part_bs[i]
                        subset[j1][-1] += 1
                        subset[j1][-2] += candidate[part_bs[i].astype(int), 2] + connection_all[k][i][2]

                # if find no partA in the subset, create a new subset
                elif not found and k < 17:
                    row = -1 * np.ones(20)
                    row[index_a] = part_as[i]
                    row[index_b] = part_bs[i]
                    row[-1] = 2
                    row[-2] = sum(candidate[connection_all[k][i, :2].astype(int), 2]) + connection_all[k][i][2]
                    subset = np.vstack([subset, row])

    # delete some rows of subset which has few parts occur
    print("t2",time.time()-t2)
    t3 = time.time()
    delete_idx = []
    for i in range(len(subset)):
        if subset[i][-1] < 4 or subset[i][-2] / subset[i][-1] < 0.4:
            delete_idx.append(i)
    subset = np.delete(subset, delete_idx, axis=0)
    points = []
    for peak in all_peaks:
        try:
            points.append((peak[0][:2]))
        except IndexError:
            points.append((None, None))
    body_parts = dict(zip(COCO_BODY_PARTS, points))
    return body_parts, all_peaks, subset, candidate
    pirnt("t3",time.time()-t3)


def draw(input_image, all_peaks, subset, candidate, resize_fac=1):
    canvas = input_image.copy()

    for i in range(18):
        for j in range(len(all_peaks[i])):
            a = all_peaks[i][j][0] * resize_fac
            b = all_peaks[i][j][1] * resize_fac
            cv2.circle(canvas, (a, b), 2, util.colors[i], thickness=-1)

    stickwidth = 1

    for i in range(17):
        for s in subset:
            index = s[np.array(util.limbSeq[i]) - 1]
            if -1 in index:
                continue
            cur_canvas = canvas.copy()
            y = candidate[index.astype(int), 0]
            x = candidate[index.astype(int), 1]
            m_x = np.mean(x)
            m_y = np.mean(y)
            length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
            angle = math.degrees(math.atan2(x[0] - x[1], y[0] - y[1]))
            polygon = cv2.ellipse2Poly((int(m_y * resize_fac), int(m_x * resize_fac)),
                                       (int(length * resize_fac / 2), stickwidth), int(angle), 0, 360, 1)
            cv2.fillConvexPoly(cur_canvas, polygon, util.colors[i])
            canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)

    return canvas
View Code

util.py

import numpy as np
from io import StringIO
import PIL.Image
from IPython.display import Image, display

# find connection in the specified sequence, center 29 is in the position 15
limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10],
           [10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17],
           [1, 16], [16, 18], [3, 17], [6, 18]]
#
# # the middle joints heatmap correpondence
hmapIdx = [[31, 32], [39, 40], [33, 34], [35, 36], [41, 42], [43, 44], [19, 20], [21, 22],
           [23, 24], [25, 26], [27, 28], [29, 30], [47, 48], [49, 50], [53, 54], [51, 52],
           [55, 56], [37, 38], [45, 46]]

# limbSeq = [[1,2], [1,5], [2,3], [3,4], [5,6], [6,7],
#               [1,8], [8,9], [9,10], [1,11], [11,12], [12,13],
#               [1,0], [0,14], [14,16], [0,15], [15,17],
#               [2,17], [5,16] ]




# visualize
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0],
          [0, 255, 0],
          [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255],
          [85, 0, 255],
          [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]


def show_bgr_image(a, fmt='jpeg'):
    a = np.uint8(np.clip(a, 0, 255))
    a[:, :, [0, 2]] = a[:, :, [2, 0]]  # for B,G,R order
    f = StringIO()
    PIL.Image.fromarray(a).save(f, fmt)
    display(Image(data=f.getvalue()))


def showmap(a, fmt='png'):
    a = np.uint8(np.clip(a, 0, 255))
    f = StringIO()
    PIL.Image.fromarray(a).save(f, fmt)
    display(Image(data=f.getvalue()))


# def checkparam(param):
#    octave = param['octave']
#    starting_range = param['starting_range']
#    ending_range = param['ending_range']
#    assert starting_range <= ending_range, 'starting ratio should <= ending ratio'
#    assert octave >= 1, 'octave should >= 1'
#    return starting_range, ending_range, octave


def get_jet_color(v, vmin, vmax):
    c = np.zeros(3)
    if v < vmin:
        v = vmin
    if v > vmax:
        v = vmax
    dv = vmax - vmin
    if v < (vmin + 0.125 * dv):
        c[0] = 256 * (0.5 + (v * 4))  # B: 0.5 ~ 1
    elif v < (vmin + 0.375 * dv):
        c[0] = 255
        c[1] = 256 * (v - 0.125) * 4  # G: 0 ~ 1
    elif v < (vmin + 0.625 * dv):
        c[0] = 256 * (-4 * v + 2.5)  # B: 1 ~ 0
        c[1] = 255
        c[2] = 256 * (4 * (v - 0.375))  # R: 0 ~ 1
    elif v < (vmin + 0.875 * dv):
        c[1] = 256 * (-4 * v + 3.5)  # G: 1 ~ 0
        c[2] = 255
    else:
        c[2] = 256 * (-4 * v + 4.5)  # R: 1 ~ 0.5
    return c


def colorize(gray_img):
    out = np.zeros(gray_img.shape + (3,))
    for y in range(out.shape[0]):
        for x in range(out.shape[1]):
            out[y, x, :] = get_jet_color(gray_img[y, x], 0, 1)
    return out


def pad_right_down_corner(img, stride, pad_value):
    h = img.shape[0]
    w = img.shape[1]

    pad = 4 * [None]
    pad[0] = 0  # up
    pad[1] = 0  # left
    pad[2] = 0 if (h % stride == 0) else stride - (h % stride)  # down
    pad[3] = 0 if (w % stride == 0) else stride - (w % stride)  # right

    img_padded = img
    pad_up = np.tile(img_padded[0:1, :, :] * 0 + pad_value, (pad[0], 1, 1))
    img_padded = np.concatenate((pad_up, img_padded), axis=0)
    pad_left = np.tile(img_padded[:, 0:1, :] * 0 + pad_value, (1, pad[1], 1))
    img_padded = np.concatenate((pad_left, img_padded), axis=1)
    pad_down = np.tile(img_padded[-2:-1, :, :] * 0 + pad_value, (pad[2], 1, 1))
    img_padded = np.concatenate((img_padded, pad_down), axis=0)
    pad_right = np.tile(img_padded[:, -2:-1, :] * 0 + pad_value, (1, pad[3], 1))
    img_padded = np.concatenate((img_padded, pad_right), axis=1)

    return img_padded, pad
View Code

 测试效果如下:

检测速度优化:

1.在rknn模型推理时间为370ms,但在处理模型的推理结果时耗时1100ms,猜测可能原因是python代码效率低的原因

2.解决方案:参考如下开源c++代码:https://github.com/dlunion/EasyOpenPose,进行推理结果的处理,时间尽缩短到60ms左右,提高了尽20倍,惊呼C++的效率

3.下定决心学好c++

 

posted @ 2020-06-16 15:38  刘文华  阅读(1483)  评论(3编辑  收藏  举报