1.线性回归
#导入工具包
import keras import numpy as np import matplotlib.pyplot as plt # Sequential按顺序构成的模型 from keras.models import Sequential # Dense全连接层 from keras.layers import Dense
# 使用numpy生成100个随机点 x_data = np.random.rand(100) noise = np.random.normal(0,0.01,x_data.shape) y_data = x_data*0.1 + 0.2 + noise # 显示随机点 plt.scatter(x_data,y_data) plt.show()
# 构建一个顺序模型 model = Sequential() # 在模型中添加一个全连接层 model.add(Dense(units=1,input_dim=1)) # sgd:Stochastic gradient descent,随机梯度下降法 # mse:Mean Squared Error,均方误差 model.compile(optimizer='sgd',loss='mse') # 训练3001个批次 for step in range(3001): # 每次训练一个批次 cost = model.train_on_batch(x_data,y_data) # 每500个batch打印一次cost值 if step % 500 == 0: print('cost:',cost) # 打印权值和偏置值 W,b = model.layers[0].get_weights() print('W:',W,'b:',b) # x_data输入网络中,得到预测值y_pred y_pred = model.predict(x_data) # 显示随机点 plt.scatter(x_data,y_data) # 显示预测结果 plt.plot(x_data,y_pred,'r-',lw=3) plt.show()