HDU 1221 Rectangle and Circle 考虑很多情况,good题

http://acm.hdu.edu.cn/showproblem.php?pid=1221

 

1
14 92 31 95 13 96 3

 

这题只需要判断圆和矩形是否相交,然后在里面是不算相交的。

那么就有好几种情况了。

1、整个矩形在圆形里,NO,(我的做法是所有点到圆心距离小于半径)

2、整个圆在矩形里,NO,一个圆选出5个点,圆心,和最上下左右,如果这些点都在,则不行。我的做法直接PointInPolygon。

3、否则,只要有公共点,就直接YES。然后,如果圆那5个点有一个在矩形,或者矩形的4个点到圆心的距离小于半径,即可。

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#define IOS ios::sync_with_stdio(false)
#define MY "H:/CodeBlocks/project/CompareTwoFile/DataMy.txt", "w", stdout
#define ANS "H:/CodeBlocks/project/CompareTwoFile/DataAns.txt", "w", stdout
using namespace std;
#define inf (0x3f3f3f3f)
typedef long long int LL;

#include <iostream>
#include <sstream>
#include <vector>
#include <set>
#include <map>
#include <queue>
#include <string>
const double eps = 1e-15;
bool same(double x, double y) {
    return fabs(x - y) < eps;
}
struct coor {
    double x,y;
    coor() {}
    coor(double xx,double yy):x(xx),y(yy) {}
    double operator ^(coor rhs) const { //计算叉积(向量积),返回数值即可
        return x*rhs.y - y*rhs.x;
    }
    coor operator -(coor rhs) const { //坐标相减,a-b得到向量ba,返回一个向量(坐标形式)
        return coor(x-rhs.x,y-rhs.y);
    }
    double operator *(coor rhs) const { //数量积,返回数值即可
        return x*rhs.x + y*rhs.y;
    }
    bool operator ==(coor rhs) const {
        return same(x,rhs.x)&&same(y,rhs.y); //same的定义其实就是和eps比较
    }
} a[111], cir[111];
double dis(coor a, coor b) {
    return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}

bool OnSegment (coor a,coor b,coor cmp) { //判断点cmp是否在线段ab上
    double min_x = min(a.x,b.x), min_y = min(a.y,b.y);
    double max_x = max(a.x,b.x), max_y = max(a.y,b.y);
    if (cmp.x>=min_x && cmp.x<=max_x && cmp.y>=min_y && cmp.y<=max_y) return true;
    else return false;
}

int PointInPolygon (coor p[],int n,coor cmp) {
    int cnt = 0; //记录单侧有多少个交点,这里的p[],必须有顺序
    for (int i=1; i<=n; ++i) {
        int t = (i+1)>n ? 1:(i+1);  //下标为1要这样MOD
        coor p1=p[i],p2=p[t];
        //printf ("%lf %lf %lf %lf***\n",p1.x,p1.y,p2.x,p2.y);
        if (OnSegment(p1,p2,cmp)) {
            coor t1 = p1-cmp,t2 = p2-cmp; //同时要叉积等于0,这是在线段上的前提
            if ((t1^t2)==0) return 2;// 2表明在多边形上,可以适当省略
        }
        if (cmp.y >= max(p1.y,p2.y)) continue;//交点在延长线上和在凸顶点上的都不要
        if (cmp.y <  min(p1.y,p2.y)) continue;//交点在凹顶点上就要,这里没取等
        if (same(p1.y,p2.y)) continue; //与cmp.y是平行的
        double x = (cmp.y-p1.y)*(p1.x-p2.x)/(p1.y-p2.y) + p1.x; //求交点 p1.y != p2.y不会除0
        if (x>cmp.x) cnt++;//只统计一侧的交点
    }
    return cnt&1;//0表明点在多边形外,1表明点在多边形内
}

void work() {
    double x, y, R;
    scanf("%lf%lf%lf", &x, &y, &R);
    double xx1, xx2, yy1, yy2;
    scanf("%lf%lf%lf%lf", &xx1, &yy1, &xx2, &yy2);
    int lena = 0;
    a[++lena] = coor(xx1, yy1);
    a[++lena] = coor(xx1, yy2);
    a[++lena] = coor(xx2, yy2);
    a[++lena] = coor(xx2, yy1);

    int lencir = 0;
    cir[++lencir] = coor(x + R, y);
    cir[++lencir] = coor(x, y + R);
    cir[++lencir] = coor(x - R, y);
    cir[++lencir] = coor(x, y - R);
    cir[++lencir] = coor(x, y);
    int up = 0;
    for (int i = 1; i <= lencir; ++i) {
        if (PointInPolygon(a, 4, cir[i])) {
            up++;
        }
        if (PointInPolygon(a, 4, cir[i]) == 2 && i != lencir) {
            printf("YES\n");
            return;
        }
    }
    if (up == lencir) {
        printf("NO\n");
        return;
    }
    up = 0;
    for (int i = 1; i <= lena; ++i) {
        double tdis = dis(a[i], coor(x, y));
        if (same(tdis, R)) {
            printf("YES\n");
            return;
        }
        if (tdis < R) up++;
    }
    if (up == lena) {
        printf("NO\n");
        return;
    }
    
    for (int i = 1; i <= lena; ++i) {
        double tdis = dis(a[i], coor(x, y));
        if (same(tdis, R) || tdis < R) {
            printf("YES\n");
            return;
        }
    }

    for (int i = 1; i <= lencir; ++i) {
        if (PointInPolygon(a, 4, cir[i])) {
            printf("YES\n");
            return;
        }
    }
    printf("NO\n");
//    cout << dis(coor(5,5), coor(7, 7)) << endl;
    return;
}
int main() {
#ifdef local
    freopen("data.txt","r",stdin);
    freopen(MY);
#endif
    int t;
    scanf("%d", &t);
    while (t--) {
        work();
    }
    return 0;
}
View Code

 

开始的时候,判断有一个点在就行的时候,(就是相切的时候),把圆心也算进去了,坑了半天。

 

https://www.desmos.com/calculator  分享个画图工具,矩形的话,就直接是x>=10 x <= 99这样画

posted on 2016-11-20 13:36  stupid_one  阅读(313)  评论(0编辑  收藏  举报

导航