MapReduce多表连接

多表关联

    多表关联和单表关联类似,它也是通过对原始数据进行一定的处理,从其中挖掘出关心的信息。下面进入这个实例。

1 实例描述

    输入是两个文件,一个代表工厂表,包含工厂名列和地址编号列;另一个代表地址表,包含地址名列和地址编号列。要求从输入数据中找出工厂名地址名对应关系,输出"工厂名——地址名"表。

    样例输入如下所示。

    1)factory:

factoryname                    addressed

Beijing Red Star                    1

Shenzhen Thunder                3

Guangzhou Honda                2

Beijing Rising                       1

Guangzhou Development Bank      2

Tencent                        3

Back of Beijing                     1

    2)address:

addressID    addressname

1            Beijing

2            Guangzhou

3            Shenzhen

4            Xian

    样例输出如下所示。

factoryname                        addressname

Back of Beijing                          Beijing

Beijing Red Star                        Beijing

Beijing Rising                          Beijing

Guangzhou Development Bank          Guangzhou

Guangzhou Honda                    Guangzhou

Shenzhen Thunder                    Shenzhen

Tencent                            Shenzhen

2 设计思路

    多表关联和单表关联相似,都类似于数据库中的自然连接。相比单表关联,多表关联的左右表和连接列更加清楚。所以可以采用和单表关联的相同处理方式,map识别出输入的行属于哪个表之后,对其进行分割,将连接的列值保存在key中,另一列和左右表标识保存在value中,然后输出。reduce拿到连接结果之后,解析value内容,根据标志将左右表内容分开存放,然后求笛卡尔积,最后直接输出。

    这个实例的具体分析参考单表关联实例。下面给出代码。

复制代码
  1 import java.io.IOException;
  2 import java.lang.String;
  3 import java.util.Iterator;
  4 import java.util.StringTokenizer;
  5 
  6 import org.apache.hadoop.fs.Path;
  7 import org.apache.hadoop.io.Text;
  8 import org.apache.hadoop.mapreduce.Job;
  9 import org.apache.hadoop.mapreduce.Mapper;
 10 import org.apache.hadoop.mapreduce.Reducer;
 11 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
 12 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
 13 
 14 public class MTJoin {
 15     public static int time = 0;
 16 
 17     public static class Map extends Mapper<Object, Text, Text, Text> {
 18 
 19         @Override
 20         protected void map(Object key, Text value, Context context)
 21                 throws IOException, InterruptedException {
 22             String line = value.toString();
 23             String relationType = new String();
 24             if (line.contains("factoryname") == true
 25                     || line.contains("addressID") == true) {
 26                 return;
 27             }
 28 
 29             StringTokenizer itr = new StringTokenizer(line);
 30             String mapkey = new String();
 31             String mapvalue = new String();
 32 
 33             String[] split = line.split("    ");
 34 
 35             if (split.length == 2 && split[1].charAt(0) >= '0'
 36                     && split[1].charAt(0) <= '9') {
 37                 mapkey = split[1];
 38                 mapvalue = split[0];
 39                 relationType = "1";
 40             }
 41             if (split.length == 2 && split[0].charAt(0) >= '0'
 42                     && split[0].charAt(0) <= '9') {
 43                 mapkey = split[0];
 44                 mapvalue = split[1];
 45                 relationType = "2";
 46             }
 47 
 48             context.write(new Text(mapkey), new Text(relationType + "+"
 49                     + mapvalue));
 50 
 51         }
 52     }
 53 
 54     public static class Reduce extends Reducer<Text, Text, Text, Text> {
 55 
 56         @Override
 57         protected void reduce(Text key, Iterable<Text> values, Context context)
 58                 throws IOException, InterruptedException {
 59             if (0 == time) {
 60                 context.write(new Text("factoryname"), new Text("addressname"));
 61                 time++;
 62             }
 63             
 64             int factorynum = 0;
 65             String[] factory = new String[10];
 66             int addressnum = 0;
 67             String[] address = new String[10];
 68 
 69             for(Text value:values ){
 70                 if (0 == value.toString().length()) {
 71                     continue;
 72                 }
 73                 
 74                 char relationType = value.toString().charAt(0);
 75 
 76                 // left
 77                 if ('1' == relationType) {
 78                     factory[factorynum] = value.toString().substring(2);
 79                     factorynum++;
 80                 }
 81                 // right
 82                 if ('2' == relationType) {
 83                     address[addressnum] = value.toString().substring(2);
 84                     addressnum++;
 85                 }
 86             }
 87             
 88 
 89             if (0 != factorynum && 0 != addressnum) {
 90                 for (int m = 0; m < factorynum; m++) {
 91                     for (int n = 0; n < addressnum; n++) {
 92                         context.write(new Text(factory[m]),
 93                                 new Text(address[n]));
 94                     }
 95                 }
 96             }
 97         }
 98 
 99     }
100 
101     public static void main(String[] args) throws Exception {
102         Job job = new Job();
103         job.setJobName("MTJoin");
104         job.setJarByClass(MTJoin.class);
105 
106         job.setMapperClass(Map.class);
107         job.setReducerClass(Reduce.class);
108 
109         job.setOutputKeyClass(Text.class);
110         job.setOutputValueClass(Text.class);
111 
112         FileInputFormat.addInputPath(job, new Path(args[0]));
113         FileOutputFormat.setOutputPath(job, new Path(args[1]));
114 
115         System.exit(job.waitForCompletion(true) ? 0 : 1);
116     }
117 }
View Code
复制代码

 

posted @   liutoutou  阅读(887)  评论(0编辑  收藏  举报
努力加载评论中...
点击右上角即可分享
微信分享提示