tongqingliu

保持学习的态度

python基于pillow库的简单图像处理

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
from PIL import Image
from PIL import ImageFilter
from PIL import ImageEnhance
import matplotlib.pyplot as plt
 
# 将彩色图片转成灰度图片
img = Image.open('pic.jpg') # 读取图片
gray = img.convert('L') # 转成灰度图
plt.figure('将彩色图片转成灰度图片')
plt.subplot(1,2,1)
plt.title("original image") # 设置标题
plt.imshow(img) # 显示原始图片
plt.axis('off') # 不显示坐标轴
plt.subplot(1,2,2)
plt.title('gray image') # 设置标题
plt.imshow(gray,cmap = 'gray')
plt.axis('off')
plt.show() # 显示图片框
 
# 裁剪图像
img = Image.open('pic.jpg'# 读取图片
plt.figure("裁剪图像")
plt.subplot(1,2,1)
plt.title('original image') # 设置标题
plt.imshow(img) # 显示原始图片
plt.axis('off') # 不显示坐标轴
img_size = img.size # 获取图像大小
start_x = int(img_size[0]/2)
end_x = img_size[0]
start_y = int(img_size[1]/2)
end_y = img_size[1]
box = (start_x,start_y,end_x,end_y) # 定义裁剪区间
roi = img.crop(box)     # 裁剪
plt.subplot(1,2,2)
plt.title('cropped image') # 设置标题
plt.imshow(roi) # 显示裁剪后的图片
plt.axis('off') # 不显示坐标轴
plt.show() # 显示图片框
 
# 旋转图像
img = Image.open('pic.jpg'# 读取图片
plt.figure("旋转图像")
plt.subplot(1,2,1)
plt.title('original image') # 设置标题
plt.imshow(img) # 显示原始图片
plt.axis('off') # 不显示坐标轴
dst = img.rotate(45) # 顺时针旋转45度
plt.subplot(1,2,2)
plt.title('rotated image') # 设置标题
plt.imshow(dst) # 显示裁剪后的图片
plt.axis('off') # 不显示坐标轴
plt.show()  # 显示图片框
 
# 寻找边缘信息的滤波
img = Image.open('pic.jpg'# 读取图片
gray = img.convert('L') # 转成灰度图
plt.figure("边缘信息滤波")
plt.subplot(1,2,1)
plt.title('original image') # 设置标题
plt.imshow(gray,cmap = 'gray') # 显示原始图片
plt.axis('off') # 不显示坐标轴
im = gray.filter(ImageFilter.FIND_EDGES) # 边缘滤波
plt.subplot(1,2,2)
plt.title('edge filtering') # 设置标题
plt.imshow(im,cmap = 'gray') # 显示裁剪后的图片
plt.axis('off') # 不显示坐标轴
plt.show()  # 显示图片框
 
# 浮雕滤波
img = Image.open('pic.jpg'# 读取图片
gray = img.convert('L') # 转成灰度图
plt.figure("浮雕滤波")
plt.subplot(1,2,1)
plt.title('original image') # 设置标题
plt.imshow(gray,cmap = 'gray') # 显示原始图片
plt.axis('off') # 不显示坐标轴
im =  gray.filter(ImageFilter.EMBOSS) # 浮雕滤波
plt.subplot(1,2,2)
plt.title('embossed filtering') # 设置标题
plt.imshow(im,cmap = 'gray') # 显示裁剪后的图片
plt.axis('off') # 不显示坐标轴
plt.show()  # 显示图片框
 
# 轮廓滤波
img = Image.open('pic.jpg'# 读取图片
gray = img.convert('L') # 转成灰度图
plt.figure("轮廓滤波")
plt.subplot(1,2,1)
plt.title('original image') # 设置标题
plt.imshow(gray,cmap = 'gray') # 显示原始图片
plt.axis('off') # 不显示坐标轴
im =  gray.filter(ImageFilter.CONTOUR) # 轮廓滤波
plt.subplot(1,2,2)
plt.title('contour filtering') # 设置标题
plt.imshow(im,cmap = 'gray') # 显示裁剪后的图片
plt.axis('off') # 不显示坐标轴
plt.show()  # 显示图片框
 
# 图像增强
img = Image.open('pic.jpg'# 读取图片
gray = img.convert('L') # 转成灰度图
plt.figure("图像增强")
plt.subplot(1,2,1)
plt.title('original image') # 设置标题
plt.imshow(gray,cmap = 'gray') # 显示原始图片
plt.axis('off') # 不显示坐标轴
im = ImageEnhance.Color(gray).enhance(0.5) # 图像增强
plt.subplot(1,2,2)
plt.title('enhanced image') # 设置标题
plt.imshow(im) # 显示裁剪后的图片
plt.axis('off') # 不显示坐标轴
plt.show()  # 显示图片框

  

复制代码

posted on   tongqingliu  阅读(523)  评论(0编辑  收藏  举报

编辑推荐:
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
阅读排行:
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 【译】Visual Studio 中新的强大生产力特性
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 【设计模式】告别冗长if-else语句:使用策略模式优化代码结构

导航

统计信息

点击右上角即可分享
微信分享提示