差分形式的牛顿插值法(c++)

本程序对cosx函数进行插值,取步长为0.1,因此x的值为0.00,0.10,0.20,0.30,对应的y值为cos(0.00),cos(0.10),cos(0.20),cos(0.30),其实本程序Horner方法(又称秦九韶算法)效率更高,计算更加准确

#include <iostream>

#include <cmath>

using namespace std;

int factorial(int n);      //声明阶乘函数

double average_deviation(double* function_value,double& h,int end);      //声明均差函数

int main()

{

      double h=0.10;      //计算的步长

      double x[4]={0.00,0.10,0.20,0.30};      //用来存储已知x的值

      double y[4]={cos(0.00),cos(0.10),cos(0.20),cos(0.30)};      //用来存储已知y的值

      double result=0;      //用来保存最后的插值结果

      double input_x;      //插值的x

      double polynomial;      //保存多项式的值

      cout<<"通过插值得到的函数为:"<<endl;

      for (int i=0;i<4;i++)

      {

            cout<<average_deviation(y,h,i)/(factorial(i))/pow(h,i);

            for (int j=0;j<i;j++)

                  cout<<"*"<<"("<<"x-"<<x[j]<<")";

            if (i<3&&((average_deviation(y,h,i+1)/(factorial(i+1))/pow(h,i+1))>0))

                  cout<<"+";

      }

      cout<<endl;

      cout<<"请输入插值的x值:";

      cin>>input_x;

      for (int i=0;i<4;i++)

      {

            polynomial=1;

            for (int j=0;j<i;j++)

            {

                  polynomial*=(input_x-x[j]);

            }

            result+=(average_deviation(y,h,i)/(factorial(i))/pow(h,i)*polynomial);

      }

      cout<<"插值得到的函数值为:"<<result<<endl;

      cout<<"函数的真实值为:"<<cos(input_x)<<endl;

      cout<<"误差为:"<<100*((result-cos(input_x))/cos(input_x))<<"%"<<endl;

      return 0;

}

   

int factorial(int n)

{

      if (n<0)

      {

            cout<<"请输入正整数值"<<endl;

            exit(0);

      }

      else if (n==0)

            return 1;

      else

            return n*factorial(n-1);

}

   

double average_deviation(double* function_value,double& h,int end)

   

{

      double* function_value_f;      //function_value_f用来保存0k-1k阶差分

      double* function_value_b;      //function_value_f用来保存1kk阶差分

      double value_f;

      double value_b;

      if (0==end)

      {

            return function_value[end];

      }

      else

      {

            function_value_f=new double[end];

            function_value_b=new double[end];

            for (int i=1;i<=end;i++)

                  function_value_f[i-1]=function_value[i];

            for (int i=0;i<=end-1;i++)

                  function_value_b[i]=function_value[i];

            value_f = average_deviation(function_value_f,h,end - 1);

            value_b = average_deviation(function_value_b,h, end - 1);

           

            delete[] function_value_f;

            delete[] function_value_b;

           

            return value_f-value_b;

      }

}

 

posted @ 2015-11-28 11:51  硫酸亚铜  阅读(761)  评论(0编辑  收藏  举报