菜鸟学设计模式(一)——小单例有大秘密
单例模式大家并不陌生,也都知道它分为什么懒汉式、饿汉式之类的。但是你对单例模式的理解足够透彻吗?今天我带大家一起来看看我眼中的单例,可能会跟你的认识有所不同。
下面是一个简单的小实例:
//简单懒汉式 public class Singleton { //单例实例变量 private static Singleton instance = null; //私有化的构造方法,保证外部的类不能通过构造器来实例化 private Singleton() {} //获取单例对象实例 public static Singleton getInstance() { if (instance == null) { instance = new Singleton(); } System.out.println("我是简单懒汉式单例!"); return instance; } }
很容易看出,上面这段代码在多线程的情况下是不安全的,当两个线程进入if (instance == null)时,两个线程都判断instance为空,接下来就会得到两个实例了。这不是我们想要的单例。
接下来我们用加锁的方式来实现互斥,从而保证单例的实现。
//同步法懒汉式 public class Singleton { //单例实例变量 private static Singleton instance = null; //私有化的构造方法,保证外部的类不能通过构造器来实例化 private Singleton() {} //获取单例对象实例 public static synchronized Singleton getInstance() { if (instance == null) { instance = new Singleton(); } System.out.println("我是同步法懒汉式单例!"); return instance; } }
加上synchronized后确实保证了线程安全,但是这样就是最好的方法吗?很显然它不是,因为这样一来每次调用getInstance()方法是都会被加锁,而我们只需要在第一次调用getInstance()的时候加锁就可以了。这显然影响了我们程序的性能。我们继续寻找更好的方法。
经过分析发现,只需要保证instance = new Singleton()是线程互斥就可以保证线程安全,所以就有了下面这个版本:
//双重锁定懒汉式 public class Singleton { //单例实例变量 private static Singleton instance = null; //私有化的构造方法,保证外部的类不能通过构造器来实例化 private Singleton() {} //获取单例对象实例 public static Singleton getInstance() { if (instance == null) { synchronized (Singleton.class) { if (instance == null) { instance = new Singleton(); } } } System.out.println("我是双重锁定懒汉式单例!"); return instance; } }
这次看起来既解决了线程安全问题,又不至于每次调用getInstance()都会加锁导致降低性能。看起来是一个完美的解决方案,事实上是这样的吗?
很遗憾,事实并非我们想的那么完美。java平台内存模型中有一个叫“无序写”(out-of-order writes)的机制。正是这个机制导致了双重检查加锁方法的失效。这个问题的关键在上面代码上的第5行:instance = new Singleton(); 这行其实做了两个事情:1、调用构造方法,创建了一个实例。2、把这个实例赋值给instance这个实例变量。可问题就是,这两步jvm是不保证顺序的。也就是说。可能在调用构造方法之前,instance已经被设置为非空了。下面我们一起来分析一下:
假设有两个线程A、B
1、线程A进入getInstance()方法。
2、因为此时instance为空,所以线程A进入synchronized块。
3、线程A执行 instance = new Singleton(); 把实例变量instance设置成了非空。(注意,是在调用构造方法之前。)
4、线程A退出,线程B进入。
5、线程B检查instance是否为空,此时不为空(第三步的时候被线程A设置成了非空)。线程B返回instance的引用。(问题出现了,这时instance的引用并不是Singleton的实例,因为没有调用构造方法。)
6、线程B退出,线程A进入。
7、线程A继续调用构造方法,完成instance的初始化,再返回。
难道就没有一个好方法了吗?好的方法肯定是有的,我们继续探索!
//解决无序写问题懒汉式 public class Singleton { //单例实例变量 private static Singleton instance = null; //私有化的构造方法,保证外部的类不能通过构造器来实例化 private Singleton() {} //获取单例对象实例 public static Singleton getInstance() { if (instance == null) { synchronized (Singleton.class) { //1 Singleton temp = instance; //2 if (temp == null) { synchronized (Singleton.class) { //3 temp = new Singleton(); //4 } instance = temp; //5 } } } System.out.println("我是解决无序写懒汉式单例!"); return instance; } }
1、线程A进入getInstance()方法。
2、因为instance是空的 ,所以线程A进入位置//1的第一个synchronized块。
3、线程A执行位置//2的代码,把instance赋值给本地变量temp。instance为空,所以temp也为空。
4、因为temp为空,所以线程A进入位置//3的第二个synchronized块。
5、线程A执行位置//4的代码,把temp设置成非空,但还没有调用构造方法!(“无序写”问题)
6、线程A阻塞,线程B进入getInstance()方法。
7、因为instance为空,所以线程B试图进入第一个synchronized块。但由于线程A已经在里面了。所以无法进入。线程B阻塞。
8、线程A激活,继续执行位置//4的代码。调用构造方法。生成实例。
9、将temp的实例引用赋值给instance。退出两个synchronized块。返回实例。
10、线程B激活,进入第一个synchronized块。
11、线程B执行位置//2的代码,把instance实例赋值给temp本地变量。
12、线程B判断本地变量temp不为空,所以跳过if块。返回instance实例。
到此为止,上面的问题我们是解决了,但是我们突然发现为了解决线程安全问题,但给人的感觉就像身上缠了很多毛线.... 乱糟糟的,所以我们要精简一下:
//饿汉式 public class Singleton { //单例变量 ,static的,在类加载时进行初始化一次,保证线程安全 private static Singleton instance = new Singleton(); //私有化的构造方法,保证外部的类不能通过构造器来实例化。 private Singleton() {} //获取单例对象实例 public static Singleton getInstance() { System.out.println("我是饿汉式单例!"); return instance; } }
看到上面的代码,瞬间觉得这个世界清静了。不过这种方式采用的是饿汉式的方法,就是预先声明Singleton对象,这样带来的一个缺点就是:如果构造的单例很大,构造完又迟迟不使用,会导致资源浪费。
到底有没有完美的方法呢?继续看:
//内部类实现懒汉式 public class Singleton { private static class SingletonHolder{ //单例变量 private static Singleton instance = new Singleton(); } //私有化的构造方法,保证外部的类不能通过构造器来实例化。 private Singleton() { } //获取单例对象实例 public static Singleton getInstance() { System.out.println("我是内部类单例!"); return SingletonHolder.instance; } }
懒汉式(避免上面的资源浪费)、线程安全、代码简单。因为java机制规定,内部类SingletonHolder只有在getInstance()方法第一次调用的时候才会被加载(实现了lazy),而且其加载过程是线程安全的(实现线程安全)。内部类加载的时候实例化一次instance。
简单说一下上面提到的无序写,这是jvm的特性,比如声明两个变量,String a; String b; jvm可能先加载a也可能先加载b。同理,instance = new Singleton();可能在调用Singleton的构造函数之前就把instance置成了非空。这是很多人会有疑问,说还没有实例化出Singleton的一个对象,那么instance怎么就变成非空了呢?它的值现在是什么呢?想了解这个问题就要明白instance = new Singleton();这句话是怎么执行的,下面用一段伪代码向大家解释一下:
mem = allocate(); //为Singleton对象分配内存。 instance = mem; //注意现在instance是非空的,但是还没有被初始化。 ctorSingleton(instance); //调用Singleton的构造函数,传递instance.
由此可见当一个线程执行到instance = mem; 时instance已为非空,如果此时另一个线程进入程序判断instance为非空,那么直接就跳转到return instance;而此时Singleton的构造方法还未调用instance,现在的值为allocate();返回的内存对象。所以第二个线程得到的不是Singleton的一个对象,而是一个内存对象。
以上就是就是我对单例模式的一点小小的思考跟理解,热烈欢迎各位大神前来指导批评。