linux 可执行文件与写操作的同步问题

  当一个可执行文件已经为write而open时,此时的可执行文件是不允许被执行的。反过来,一个文件正在执行时,它也是不允许同时被write模式而open的。这个约束很好理解,因为文件执行和文件被写应该需要同步保护,因此内核会保证这种同步。

  那么内核是如何实现该机制的呢?

  Inode结点中包含一个数据项,叫做i_writecount,很明显是用于记录文件被写的个数的,用于同步的,其类型也是atomic_t. 内核中有两个我们需要了解的函数,与write操作有关,分别是:

int get_write_access(struct inode * inode)
{
	spin_lock(&inode->i_lock);
	if (atomic_read(&inode->i_writecount) < 0) {
                spin_unlock(&inode->i_lock);
		return -ETXTBSY;
	}
	atomic_inc(&inode->i_writecount);
        spin_unlock(&inode->i_lock);
	return 0;
}

int deny_write_access(struct file * file)
{
	struct inode *inode = file->f_path.dentry->d_inode;
        spin_lock(&inode->i_lock);
	if (atomic_read(&inode->i_writecount) > 0) {//如果文件被打开了,返回失败
                spin_unlock(&inode->i_lock);
		return -ETXTBSY;
	}
        atomic_dec(&inode->i_writecount); 
	spin_unlock(&inode->i_lock);
}

  这两个函数都很简单,get_write_acess作用就和名称一致,同样deny_write_access也是。如果一个文件被执行了,要保证它在执行的过程中不能被写,那么在开始执行前应该调用deny_write_access 来关闭写的权限。那就来检查execve系统调用有没有这么做。

  Sys_execve中调用do_execve,然后又调用函数open_exec,看一下open_exec的代码:

struct file *open_exec(const char *name)
{
	struct file *file;
	int err;
        file = do_filp_open(AT_FDCWD, name,
				O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
				MAY_EXEC | MAY_OPEN);
    
        if (IS_ERR(file))
		goto out;
        err = -EACCES;

	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
		goto exit;

        if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
		goto exit;

        fsnotify_open(file->f_path.dentry);
	err = deny_write_access(file);//调用
       if (err)
		goto exit;
 
       out:
	return file;
    
       exit:
	fput(file);
	return ERR_PTR(err);
}
  

  明显看到了deny_write_access的调用,和预想的完全一致。在open的调用里,应该有get_write_access的调用。在open调用相关的__dentry_open函数中就包含了对该函数的调用,

if (f->f_mode & FMODE_WRITE) {
	error = __get_file_write_access(inode, mnt);
	if (error)
            goto cleanup_file;
	if (!special_file(inode->i_mode))
	  file_take_write(f);
}

  其中__get_file_write_access(inode, mnt)封装了get_write_access.

  那么内核又是如何保证一个正在被写的文件是不允许被执行的呢?这个同样也很简单,当一个文件已经为write而open时,它对应的inode的i_writecount会变成1,因此在执行execve时同样会调用deny_write_access 中读取到i_writecount>0之后就会返回失败,因此execve也就会失败返回。

  这里是写文件与i_writecount相关的场景:
  写打开一个文件时,在函数dentry_open中:

if (f->f_mode & FMODE_WRITE) { 
	error = get_write_access(inode); 
	if (error) 
	goto cleanup_file; 
} 

  当然在文件关闭时,会将i_writecount--;关闭时会执行代码:

if (file->f_mode & FMODE_WRITE) 
	put_write_access(inode); 

  put_write_access 代码很简单:

static inline void put_write_access(struct inode * inode) 
{ 
	atomic_dec(&inode->i_writecount); 
} 

  于是乎自己写了个简单的代码,一个空循环,文件在执行的时候,在bash中,echo 111 >>可执行文件,结果预期之中,返回失败,并提示信息 text file busy.

  那么该机制是否同样适用于映射机制呢,在执行可执行文件时,会mmap一些关联的动态链接库,这些动态链接库是否被mmap之后就不允许被写以及正在写时不允许mmap呢?这个是需要考虑的,因为它关系到安全的问题。因为库文件也是可执行的代码,被篡改同样会引起安全问题。

  Mmap在调用mmap_region的函数里,有一个相关的检查:

if (vm_flags & VM_DENYWRITE) {		    
        error = deny_write_access(file);
	if (error)
		goto free_vma;
	correct_wcount = 1;
}

  其中,mmap调用中的flags参数会被正确的赋值给vm_flags,对应关系是MAP_DENYWRIRE被设置了,那么VM_DENYWRITE就对应的也被设置。下面写了个简单的代码,做一下测试:

#include <stdio.h>
#include <sys/mman.h>
#include <string.h>
#include <errno.h>
#include <fcntl.h>
#include <unistd.h>
int main()
{
        int fd;
	void *src = NULL;
	fd = open("test.txt",O_RDONLY);
	if (fd != 0)
        {
		if ((src = mmap(0,5,PROT_READ|PROT_EXEC  ,MAP_PRIVATE|        MAP_DENYWRITE,fd,0))== MAP_FAILED)
                {
			printf("MMAP error\n");
			printf("%s\n",strerror(errno));
                }else{
			printf("%x\n",src);
		}
	}
    
        FILE * fd_t = fopen("test.txt","w");
	if( !fd_t)
	{
                printf("open for write error\n");
		printf("%s\n",strerror(errno));
		return 0;
	}

        if (fwrite("0000",sizeof(char),4,fd_t) != 4)
	{
		printf("fwrite error \n");
	}

    
        fclose(fd_t);
	close(fd);
	return 1;
}

  最后的test.txt被写成了”0000”,很奇怪,貌似MAP_DENTWRITE不起作用了。于是man mmap查看,发现:

  MAP_DENYWRITE

  This  flag  is ignored.  (Long ago, it signaled that attempts to write to the underlying file should fail with ETXTBUSY. But this was a source of denial-of-service attacks.)

  原来这个标识在用户层已经不起作用了啊,而且还说明了原因,容易引起拒绝式服务攻击。攻击者恶意的将某些系统程序要写的文件以MAP_DENYWRITE模式映射,会导致正常程序写文件失败。不过VM_DENYWRITE在内核里还是有使用的,在mmap中还是有对deny_write_access的调用, 但是对它的调用已经不是由mmap中的flag参数的MAP_DENYWRITE驱动的了。

  那与可执行文件相关的动态链接库文件就悲剧了,大家都知道动态链接库使用的也是mmap,这也导致动态链接库在运行时可以被更改。其实我这就是为了确认这点。这也导致我需要自己写同步控制代码了。我们可以使用inode中的i_security以及file结构的f_secutiry变量来写自己的同步逻辑,就是麻烦了不少,还要写内核模块,哎,工作量又增加了啊。安全问题是个麻烦的问题...

posted @ 2013-10-21 20:38  刘少东的博客  阅读(1518)  评论(0编辑  收藏  举报