[Leetcode]695.岛屿的最大面积(深度优先搜索的递归实现和非递归实现)

题目描述:

给定一个包含了一些 0 和 1的非空二维数组 grid , 一个 岛屿 是由四个方向 (水平或垂直) 的 1 (代表土地) 构成的组合。你可以假设二维矩阵的四个边缘都被水包围着。

找到给定的二维数组中最大的岛屿面积。(如果没有岛屿,则返回面积为0。)

示例 1:

[[0,0,1,0,0,0,0,1,0,0,0,0,0],
 [0,0,0,0,0,0,0,1,1,1,0,0,0],
 [0,1,1,0,1,0,0,0,0,0,0,0,0],
 [0,1,0,0,1,1,0,0,1,0,1,0,0],
 [0,1,0,0,1,1,0,0,1,1,1,0,0],
 [0,0,0,0,0,0,0,0,0,0,1,0,0],
 [0,0,0,0,0,0,0,1,1,1,0,0,0],
 [0,0,0,0,0,0,0,1,1,0,0,0,0]]

对于上面这个给定矩阵应返回 6。注意答案不应该是11,因为岛屿只能包含水平或垂直的四个方向的‘1’。

示例 2:

[[0,0,0,0,0,0,0,0]]

对于上面这个给定的矩阵, 返回 0。

注意: 给定的矩阵grid 的长度和宽度都不超过 50。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/max-area-of-island
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

 

典型的图搜索问题,图的搜索方式主要分为两种,深度优先搜索(Deep-First-Search,DFS)和广度优先搜索(Breadth-First-Search,BFS),那么在此题中,两种方法均可。以下是使用深度优先搜索解题的代码,(这里设计了一个visited数组,实际上可以优化,只是出于习惯定义了一个存储已访问节点)

class Solution {
    private boolean[][] visited;
    public int maxAreaOfIsland(int[][] grid) {
        visited = new boolean[grid.length][grid[0].length];
        int ans = 0;
        for(int i = 0; i < grid.length; i++){
            for(int j = 0; j < grid[0].length; j++){
                if(!visited[i][j] && grid[i][j] == 1){
                    int area = AreaSearch(grid,i,j);
                    ans = ans > area ? ans : area;
                }
                visited[i][j] = true;
            }
        }
        return ans;
    }
    private int AreaSearch(int[][] grid, int i, int j){
        if(i < 0 || i >= grid.length || j < 0 || j >= grid[0].length || grid[i][j] == 0 || visited[i][j])
            return 0;
        else{
            visited[i][j] = true;
            return 1 + AreaSearch(grid,i-1,j)
                     + AreaSearch(grid,i+1,j)
                     + AreaSearch(grid,i,j-1)
                     + AreaSearch(grid,i,j+1);
        }
    }
}

这里用到了递归,我们都知道,深度优先搜索可以基于栈实现,而广度优先搜索可以基于队列实现,而递归实际上也是基于一种栈。所以自然,不用递归实现的方法如下,

class Solution {
    private boolean[][] visited;
    public int maxAreaOfIsland(int[][] grid) {
        visited = new boolean[grid.length][grid[0].length];
        Stack<Integer> stack = new Stack<>();
        int ans = 0;
        for(int i = 0; i < grid.length; i++){
            for(int j = 0; j < grid[0].length; j++){
                if(!visited[i][j] && grid[i][j] == 1){
                    int area = 0;
                    stack.push(i);
                    stack.push(j);
                    while(!stack.isEmpty()){
                        int j1 = stack.pop();
                        int i1 = stack.pop();
                        if(i1 < 0 || i1 >= grid.length || j1 < 0 || j1 >= grid[0].length 
                                  || grid[i1][j1] == 0 || visited[i1][j1])
                            continue;
                        else{
                            visited[i1][j1] = true;
                            area += 1;
                            stack.push(i1-1);
                            stack.push(j1);
                            stack.push(i1+1);
                            stack.push(j1);
                            stack.push(i1);
                            stack.push(j1-1);
                            stack.push(i1);
                            stack.push(j1+1);
                        }
                    }
                    ans = ans > area ? ans : area;
                }
                visited[i][j] = true;
            }
        }
        return ans;
    }
}

这里顺便提一下,一开始写此类代码时,习惯在递归调用里,分别写四个方向的判断,判断方向上的下一个元素是否适合进入递归,这样代码就会写的很冗长,可读性以及可维护性都很差,看过很多标准解之后,改为在递归调用之后,判断此步递归的有效性。

 

Depth-First-Search
posted @ 2020-03-15 19:07  咕咕刘三刀  阅读(399)  评论(0编辑  收藏  举报