14.multi_match+most-fields策略

主要知识点

  • most-fields策略的用法
  • most-fields策略和best-fields的比较

   

   

best-fields策略:将某一个field匹配尽可能多的关键词的doc优先返回回来,也就是说如果这个filed匹配了更多的关键词,那么这个doc的分数就会更高。

most-fields策略:尽可能返回更多field匹配到某个关键词的doc,优先返回回来。也就是说,如果一个doc中有更多的field匹配到了关键词,那么这个doc的得分会更高。

   

一、准备数据

1、建立一个自定义mappingindex

POST /forum/_mapping/article

{

"properties": {

"sub_title": {

"type": "string",

"analyzer": "english",

"fields": {

"std": {

"type": "string",

"analyzer": "standard"

}

}

}

}

}

   

2、插入数据

POST /forum/article/_bulk

{ "update": { "_id": "1"} }

{ "doc" : {"sub_title" : "learning more courses"} }

{ "update": { "_id": "2"} }

{ "doc" : {"sub_title" : "learned a lot of course"} }

{ "update": { "_id": "3"} }

{ "doc" : {"sub_title" : "we have a lot of fun"} }

{ "update": { "_id": "4"} }

{ "doc" : {"sub_title" : "both of them are good"} }

{ "update": { "_id": "5"} }

{ "doc" : {"sub_title" : "haha, hello world"} }

   

3、进行match搜索

GET /forum/article/_search

{

"query": {

"match": {

"sub_title": "learning courses"

}

}

}

执行结果是:

{

"took": 3,

"timed_out": false,

"_shards": {

"total": 5,

"successful": 5,

"failed": 0

},

"hits": {

"total": 2,

"max_score": 1.219939,

"hits": [

{

"_index": "forum",

"_type": "article",

"_id": "2",

"_score": 1.219939,

"_source": {

"articleID": "KDKE-B-9947-#kL5",

"userID": 1,

"hidden": false,

"postDate": "2017-01-02",

"tag": [

"java"

],

"tag_cnt": 1,

"view_cnt": 50,

"title": "this is java blog",

"content": "i think java is the best programming language",

"sub_title": "learned a lot of course"

}

},

{

"_index": "forum",

"_type": "article",

"_id": "1",

"_score": 0.5063205,

"_source": {

"articleID": "XHDK-A-1293-#fJ3",

"userID": 1,

"hidden": false,

"postDate": "2017-01-01",

"tag": [

"java",

"hadoop"

],

"tag_cnt": 2,

"view_cnt": 30,

"title": "this is java and elasticsearch blog",

"content": "i like to write best elasticsearch article",

"sub_title": "learning more courses"

}

}

]

}

}

   

如果我们用的是类似于english analyzer这种分词器的话,就会将单词还原为其最基本的形态,这个还原单词的过程叫做stemmer。这样可能{ "doc" : {"sub_title" : "learned a lot of course"} },就排在了{ "doc" : {"sub_title" : "learning more courses"} }的前面

learning --> learn

learned --> learn

courses --> course

sub_titile: learning coureses --> learn course

4、加上standerd分词器,

standerd不会去还原单词的基本形态,会保留单词的原样。

POST /forum/_mapping/article

{

"properties": {

"sub_title": {

"type": "string",

"analyzer": "english",

"fields": {

"std": {

"type": "string",

"analyzer": "standard"

}

}

}

}

}

   

   

5、进行multi_match进行搜索。

GET /forum/article/_search

{

"query": {

"multi_match": {

"query": "learning courses",

"type": "most_fields",

"fields": [ "sub_title", "sub_title.std" ]

}

}

}

执行结果是:

{

"took": 2,

"timed_out": false,

"_shards": {

"total": 5,

"successful": 5,

"failed": 0

},

"hits": {

"total": 2,

"max_score": 1.219939,

"hits": [

{

"_index": "forum",

"_type": "article",

"_id": "2",

"_score": 1.219939,

"_source": {

"articleID": "KDKE-B-9947-#kL5",

"userID": 1,

"hidden": false,

"postDate": "2017-01-02",

"tag": [

"java"

],

"tag_cnt": 1,

"view_cnt": 50,

"title": "this is java blog",

"content": "i think java is the best programming language",

"sub_title": "learned a lot of course"

}

},

{

"_index": "forum",

"_type": "article",

"_id": "1",

"_score": 1.012641,

"_source": {

"articleID": "XHDK-A-1293-#fJ3",

"userID": 1,

"hidden": false,

"postDate": "2017-01-01",

"tag": [

"java",

"hadoop"

],

"tag_cnt": 2,

"view_cnt": 30,

"title": "this is java and elasticsearch blog",

"content": "i like to write best elasticsearch article",

"sub_title": "learning more courses"

}

}

]

}

}

   

你问我,具体的分数怎么算出来的,很难说,因为这个东西很复杂, 还不只是TF/IDF算法。因为不同的query,不同的语法,都有不同的计算score的细节。

   

best_fields的区别

   

1best_fields,是对多个field进行搜索,挑选某个field匹配度最高的那个分数,同时在多个query最高分相同的情况下,在一定程度上考虑其他query的分数。简单来说,你对多个field进行搜索,就想搜索到某一个field尽可能包含更多关键字的数据

   

优点:通过best_fields策略,以及综合考虑其他field,还有minimum_should_match支持,可以尽可能精准地将匹配的结果推送到最前面

缺点:除了那些精准匹配的结果,其他差不多大的结果,排序结果不是太均匀,没有什么区分度了

   

实际的例子:百度之类的搜索引擎,最匹配的到最前面,但是其他的就没什么区分度了

   

2most_fields,综合多个field一起进行搜索,尽可能多地让所有fieldquery参与到总分数的计算中来,此时就会是个大杂烩,出现类似best_fields案例最开始的那个结果,结果不一定精准,某一个document的一个field包含更多的关键字,但是因为其他document有更多field匹配到了,所以排在了前面;所以需要建立类似sub_title.std这样的field,尽可能让某一个field精准匹配query string,贡献更高的分数,将更精准匹配的数据排到前面

   

优点:将尽可能匹配更多field的结果推送到最前面,整个排序结果是比较均匀的

缺点:可能那些精准匹配的结果,无法推送到最前面

   

实际的例子:wiki,明显的most_fields策略,搜索结果比较均匀,但是的确要翻好几页才能找到最匹配的结果

posted @ 2018-03-08 08:57  outback123  阅读(282)  评论(0编辑  收藏  举报