[Hadoop] - Win7下提交job到集群上去

一般我们采用win开发+linux hadoop集群的方式进行开发,使用插件:hadoop-***-eclipse-plugin。


 

运行程序的时候,我们一般采用run as application或者选择run as hadoop。按照这个字面理解,我们可以认为第一种是运行在本地,第二种是运行在hadoop集群上。但是实际情况是一般如果不进行配置的话,全部是在本地进行运行的。如果需要将job提交到集群上,那么需要进行必要的设置和添加部分代码。

1、copy mapred-site.xml && yarn-site.xml文件,并修改必要的信息,将yarn指向集群。

2、给mapred-site.xml文件中添加参数mapreduce.app-submission.cross-platform,参数值为true。

3、打包本地代码提交到集群上,如果不进行该操作,会出现ClassNotFoundException。打包代码如下:

 1 import java.io.File;
 2 import java.io.FileInputStream;
 3 import java.io.FileOutputStream;
 4 import java.io.IOException;
 5 import java.util.jar.JarEntry;
 6 import java.util.jar.JarOutputStream;
 7 
 8 public class EJob {
 9 
10     public static File createTempJar(String root) throws IOException {
11         if (!new File(root).exists()) {
12             return null;
13         }
14 
15         final File jarFile = File.createTempFile("EJob-", ".jar", new File(System
16                 .getProperty("java.io.tmpdir")));
17 
18         Runtime.getRuntime().addShutdownHook(new Thread() {
19             @Override
20             public void run() {
21                 jarFile.delete();
22             }
23         });
24 
25         JarOutputStream out = new JarOutputStream(new FileOutputStream(jarFile));
26         createTempJarInner(out, new File(root), "");
27         out.flush();
28         out.close();
29         return jarFile;
30     }
31 
32     private static void createTempJarInner(JarOutputStream out, File f,
33             String base) throws IOException {
34         if (f.isDirectory()) {
35             File[] fl = f.listFiles();
36             if (base.length() > 0) {
37                 base = base + "/";
38             }
39             for (int i = 0; i < fl.length; i++) {
40                 createTempJarInner(out, fl[i], base + fl[i].getName());
41             }
42         } else {
43             out.putNextEntry(new JarEntry(base));
44             FileInputStream in = new FileInputStream(f);
45             byte[] buffer = new byte[1024];
46             int n = in.read(buffer);
47             while (n != -1) {
48                 out.write(buffer, 0, n);
49                 n = in.read(buffer);
50             }
51             in.close();
52         }
53     }
54  }
EJob 打包代码工具类
 File jarFile = EJob.createTempJar("target/classes");
((JobConf) job.getConfiguration()).setJar(jarFile.toString());
// 其他创建job的代码不进行任何的修改

至此,就可以将job提交到集群上去了。




 

对应任何在非hadoop集群中提交的mr任务来讲,均需要注意一下几点:

1. 参数mapreduce.app-submission.cross-platform必须设置为true,表示是跨集群提交job

2. 如果参数mapreduce.framework.name值为yarn,那么必须将类YarnClientProtocolProvider引入到项目的classpath路径中,maven依赖如下:

// 其他正常的hadoop-mapreduce-client依赖还是需要的, 只是这个在跨平台提交的过程中是一定需要的
<dependency>
    <groupId>org.apache.hadoop</groupId>
    <artifactId>hadoop-mapreduce-client-jobclient</artifactId>
    <version>${hadoop.version}</version>
</dependency>

3. 如果集群是HA设置,那么必须给定HA配置或者采用明确指定active节点的方式。必须给定的参数有yarn.resourcemanager.address和fs.defaultFS之类的定位参数

当HDFS和Yarn均使用HA的时候,跨集群提交最少配置(依赖集群的具体搭建方法,比如如果在搭建过程中执行了yarn的classpath,那么yarn-site.xml中的参数yarn.application.classpath可以不要, 其他参数不可以少,必须存在!!!)

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>
    <property>
        <name>fs.defaultFS</name>
        <value>hdfs://hdfs-cluster</value>
    </property>
</configuration>
core-site.xml
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>
    <property>
        <name>dfs.nameservices</name>
        <value>hdfs-cluster</value>
    </property>

    <property>
        <name>dfs.ha.namenodes.hdfs-cluster</name>
        <value>hdfs-cluster-1,hdfs-cluster-2</value>
    </property>

    <property>
        <name>dfs.namenode.rpc-address.hdfs-cluster.hdfs-cluster-1</name>
        <value>hdfs-cluster-1:8020</value>
    </property>

    <property>
        <name>dfs.namenode.rpc-address.hdfs-cluster.hdfs-cluster-2</name>
        <value>hdfs-cluster-2:8020</value>
    </property>

    <property>
        <name>dfs.client.failover.proxy.provider.hdfs-cluster</name>
        <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
    </property>

</configuration>
hdfs-site.xml
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>
    <property>
        <name>mapreduce.framework.name</name>
        <value>yarn</value>
    </property>
    <property>
        <name>mapreduce.app-submission.cross-platform</name>
        <value>true</value>
    </property>
</configuration>
mapred-site.xml
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>
    <!-- RM Manager Configd -->
    <property>
        <name>yarn.resourcemanager.ha.enabled</name>
        <value>true</value>
    </property>

    <property>
        <name>yarn.resourcemanager.cluster-id</name>
        <value>yarn-cluster</value>
    </property>

    <property>
        <name>yarn.resourcemanager.ha.rm-ids</name>
        <value>yarn-cluster-1,yarn-cluster-2</value>
    </property>

    <!-- RM1 Configs-->
    <property>
        <name>yarn.resourcemanager.address.yarn-cluster-1</name>
        <value>yarn-cluster-1:8032</value>
    </property>


    <!-- RM2 Configs -->
    <property>
        <name>yarn.resourcemanager.address.yarn-cluster-2</name>
        <value>yarn-cluster-2:8032</value>
    </property>

    <property>
        <name>yarn.application.classpath</name>
        <value>
                $HADOOP_CONF_DIR,
                $HADOOP_COMMON_HOME/*,$HADOOP_COMMON_HOME/lib/*,
                $HADOOP_HDFS_HOME/*,$HADOOP_HDFS_HOME/lib/*,
                $HADOOP_MAPRED_HOME/*,$HADOOP_MAPRED_HOME/lib/*,
                $HADOOP_YARN_HOME/*,$HADOOP_YARN_HOME/lib/*
        </value>
    </property>
</configuration>
yarn-site.xml

 

posted @ 2015-09-28 11:06  liuming_1992  阅读(442)  评论(0编辑  收藏  举报