会员
周边
众包
新闻
博问
闪存
赞助商
所有博客
当前博客
我的博客
我的园子
账号设置
简洁模式
...
退出登录
注册
登录
刘孟良
博客园
首页
新随笔
联系
订阅
管理
上一页
1
2
3
4
下一页
2020年5月3日
洛谷P2822组合数取模
摘要: 不会组合数基础性质的请转:https://i-beta.cnblogs.com/posts/edit;postId=12653316 首先我们知道,杨辉三角就是组合数,我们把杨辉三角左对齐后 有 1 1 2 1 1 3 3 1 1 4 6 4 1 ... 会发现第一列和最后一列的数都是1 其余的数都
阅读全文
posted @ 2020-05-03 21:20 Allen_lml
阅读(151)
评论(0)
推荐(0)
编辑
2020年4月23日
树的直径
摘要: 一、概念 在一棵树中找到距离根节点最远的两个点,这两个点之间的距离为树的直径 二、算法 1.求法:求树的直径的方法就是在树上任选一点u,求距离点u最远的点y,再求距离点y最远的点s,点y到点s的距离即为树的直径。 2.证明:假设此树的最长路径是从s到t,我们选择的点为u。反证法:假设搜到的点是v。
阅读全文
posted @ 2020-04-23 22:25 Allen_lml
阅读(152)
评论(0)
推荐(0)
编辑
2020年4月22日
树形DP&最简单的树形DP例题
摘要: 一、概念 顾名思义,树型动态规划就是在“树”的数据结构上的动态规划,平时作的动态规划都是线性的或者是建立在图上的,线性的动态规划有二种方向既向前和向后,相应的线性的动态规划有二种方法既顺推与逆推,而树型动态规划是建立在树上的,所以也相应的有二个方向: 1、叶->根:在回溯的时候从叶子节点往上更新信息
阅读全文
posted @ 2020-04-22 21:52 Allen_lml
阅读(214)
评论(0)
推荐(0)
编辑
2020年4月7日
组合数性质
摘要: 1.C(n+m,n)=C(n+m,m) 2.C(n,m)=c(n-1,m-1)+C(n-1,m) 3.C(n+r+1,r)=C(n+r,r)+C(n+r-1,r-1)+...+C(n,0) 4.C(n,l)*C(l,r)=C(n,r)*C(n-r,l-r) 5.C(n,0)+C(n,1)+...+C
阅读全文
posted @ 2020-04-07 14:41 Allen_lml
阅读(661)
评论(0)
推荐(0)
编辑
2020年4月5日
快速幂
摘要: https://blog.csdn.net/Harington/article/details/87602682 (忽然发现快速幂的博客之前没写,不想写了,推荐这篇)
阅读全文
posted @ 2020-04-05 17:21 Allen_lml
阅读(77)
评论(0)
推荐(0)
编辑
BSGS
摘要: 求a^x≡b(mod p)的一组解,p≤10^9且为质数 不妨设a^1,a^2....a^sqrt(p)为1号序列 a^sqrt(p)+1...a^2sqrt(p)为2号序列 以此类推 首先我们枚举a^1,a^2....a^sqrt(p)( mod p)即1号序列mod p的值 如果有,就说明找到了
阅读全文
posted @ 2020-04-05 17:20 Allen_lml
阅读(131)
评论(0)
推荐(0)
编辑
莫比乌斯反演(概念)
摘要: 如无特殊说明,本文 * 均代表卷积 (不懂卷积请转:https://www.cnblogs.com/liumengliang/p/12623485.html) 概念:如果g(n)=Σd|nf(d),则f(n)=Σd|nμ(d)g(n/d) (因为I(n)=1),所以可以在g(n)=Σd|nf(d)右
阅读全文
posted @ 2020-04-05 12:27 Allen_lml
阅读(147)
评论(0)
推荐(0)
编辑
2020年4月4日
dijkstra堆优化
摘要: 首先,我们概括一下大致思想(转载于Korpse——最短路径:Dijkstra算法) 注:Dijkstra算法适用于边权为正的无向和有向图,不适用于有负边权的图!(原因) 用途: 用于求图中指定两点之间的最短路径,或者是指定一点到其它所有点之间的最短路径。实质上是贪心算法。 基本思想: 1.将图上的初
阅读全文
posted @ 2020-04-04 22:58 Allen_lml
阅读(288)
评论(0)
推荐(0)
编辑
2020年4月2日
狄利克雷卷积
摘要: φ:欧拉函数,μ:莫比乌斯函数 一、定义:(f*g)(n)=Σd|nf(d)g(n/d) 例如:(f*g)(6)=f(1)*g(6)+f(2)*g(3)+f(3)*g(2)+f(6)*g(1) 二、性质: 1.交换律:f*g=g*f 2.结合律:(f*g)*h=f*(g*h) 3.分配率:(f+g)
阅读全文
posted @ 2020-04-02 22:28 Allen_lml
阅读(374)
评论(0)
推荐(2)
编辑
2020年3月31日
积性函数(求欧拉函数和莫比乌斯函数的值)
摘要: 利用素数筛法求欧拉函数和莫比乌斯函数的值: 如果函数f满足gcd(a,b)=1时,有f(ab)=f(a)*f(b),则f叫作积性函数 如果取消互质的条件,则叫完全积性函数。 前置知识: 1.欧拉函数:φ(n)表示1~n中与n互质的数的个数 计算公式为:φ(n)=n*(1-1/p1)*(1-1/p2)
阅读全文
posted @ 2020-03-31 15:26 Allen_lml
阅读(280)
评论(0)
推荐(1)
编辑
上一页
1
2
3
4
下一页