摘要:
给定a,b,设g=gcd(a,b),求x,y满足x*a+y*b=g(x,y∈Z) 本方法用的是辗转相除的思想。 设(x+t)*a+(y+r)*b=g 只要t=k*b/gcd(a,b),r=-k*a/gcd(a,b)就满足等式 通解为:(x+k*b/gcd(a,b),y-k*b/gcd(a,b)). 阅读全文
摘要:
求1~n所有数的逆元: 假设1~i-1的逆元已求出,设p÷i=d……r(商d余r),则p=i*d+r。其中r=p%i。 对p=i*d+r,等式两边同时%p,得到0=(i*d+r)%p。 即为0≡i*d+r(mod p)(同余有一条性质:如果a≡b(mod m),x≡y(mod m),则有ax≡by( 阅读全文