程序媛詹妮弗
终身学习

Given a non-empty binary tree, find the maximum path sum.

For this problem, a path is defined as any sequence of nodes from some starting node to any node in the tree along the parent-child connections. The path must contain at least one node and does not need to go through the root.

Example 1:

Input: [1,2,3]

       1
      / \
     2   3

Output: 6

Example 2:

Input: [-10,9,20,null,null,15,7]

   -10
   / \
  9  20
    /  \
   15   7

Output: 42

 

思路

dfs:

            2

         /       \

        1         -3

maxPath:  1 + 2 + 0 

1. use maxPath to update result from all paths which is max path sum 

2. divide a path into 3 parts:

a. left path: from root to left side down to 0 or more steps

b. right path: from root to right side down to 0 or more steps 

c. cur root itself 

3. maxPath = c + (a>0 ? a: 0 ) + (b > 0 ? b:0)

 

这是一道关于BST和recursion的经典题,需要掌握

最naive的想法是找到所有BST的path,返回max

发现, 任意一条path都有一个顶点(位置最高点)

我们用这个顶点来分解所有path

这样,以任意一个点为顶点的path就分解为

a. max_sum (左边path)

b. max_sum (右边path)

c. 顶点自己的value

进一步,

a + b + c 组成的人字形path的max path sum

     2
    /  \
   1    -3

dfs的return value :  2(顶点自己的value必须加上,无论正负) +  1 (正数贡献自己) + 0 (-3为负数不做贡献就是及时止损了)  = 3 

 

跟 [leetcode]543. Diameter of Binary Tree二叉树直径 的思路基本一致。

 

代码

 1 class Solution {
 2     public int maxPathSum(TreeNode root) {
 3         // corner case 
 4         if(root == null){return 0;}
 5          /* 要么用个global variable放在class下,要么用长度为1的一维数组来存。
 6             maxSum的value,可正可负,初始化为Integer.MIN_VALUE。
 7         */
 8         int[] maxPath = new int[]{Integer.MIN_VALUE};
 9         dfs(root, maxPath);
10         return maxPath[0];
11     }
12     // 递归求以root为顶点所有直上直下的path中,path sum最大的一条值。没有U-turn的
13     private int dfs(TreeNode root, int[]maxPath){
14         // left > 0 benefit sum, add to sum; left < 0 will worsen sum, default 0 
15         int left = root.left != null ? Math.max(dfs(root.left, maxPath), 0) : 0;
16         int right = root.right != null ? Math.max(dfs(root.right, maxPath), 0) : 0;
17         int cur = root.val + left + right;
18         maxPath[0] = Math.max(maxPath[0], cur);
19         return root.val  + Math.max(left, right);
20     }   
21 }

 

 

posted on 2018-10-18 14:32  程序媛詹妮弗  阅读(328)  评论(0编辑  收藏  举报