图的深度优先搜索法是树的先根遍历的推广,它的基本思想是:从图G的某个顶点v0出发,访问v0,然后选择一个与v0相邻且没被访问过的顶点vi访问,再 从vi出发选择一个与vi相邻且未被访问的顶点vj进行访问,依次继续。如果当前被访问过的顶点的所有邻接顶点都已被访问,则退回到已被访问的顶点序列中 最后一个拥有未被访问的相邻顶点的顶点w,从w出发按同样的方法向前遍历,直到图中所有顶点都被访问。

图的广度优先搜索是树的按层次遍历的推广,它的基本思想是:首先访问初始点vi,并将其标记为已访问过,接着访问vi的所有未被访问过的邻接点 vi1,vi2, …, vi t,并均标记已访问过,然后再按照vi1,vi2, …, vi t的次序,访问每一个顶点的所有未被访问过的邻接点,并均标记为已访问过,依次类推,直到图中所有和初始点vi有路径相通的顶点都被访问过为止。

二叉树的深度优先遍历的非递归的通用做法是采用栈,广度优先遍历的非递归的通用做法是采用队列。

 

/***************** 教科书标准算法及优化算法(转)*******************/
1.先序遍历非递归算法
void PreOrderUnrec(Bitree *t)
{
    Stack s;
    StackInit(s);
    Bitree *p=t;
  
    while (p!=NULL || !StackEmpty(s))
    {
        while (p!=NULL)             //遍历左子树
        {
            visite(p->data);
            push(s,p);
            p=p->lchild; 
        }
       
        if (!StackEmpty(s))         //通过下一次循环中的内嵌while实现右子树遍历
        {
            p=pop(s);
            p=p->rchild;       
        }//endif
              
    }//endwhile
}

2.中序遍历非递归算法
void InOrderUnrec(Bitree *t)
{
    Stack s;
    StackInit(s);
    Bitree *p=t;

    while (p!=NULL || !StackEmpty(s))
    {
        while (p!=NULL)             //遍历左子树
        {
            push(s,p);
            p=p->lchild;
        }
       
        if (!StackEmpty(s))
        {
            p=pop(s);
            visite(p->data);        //访问根结点
            p=p->rchild;            //通过下一次循环实现右子树遍历
        }//endif  
  
    }//endwhile
}

3.后序遍历非递归算法
typedef enum{L,R} tagtype;
typedef struct
{
    Bitree ptr;
    tagtype tag;
}stacknode;

typedef struct
{
    stacknode Elem[maxsize];
    int top;
}SqStack;

void PostOrderUnrec(Bitree t)
{
    SqStack s;
    stacknode x;
    StackInit(s);
    p=t;
  
    do
    {
        while (p!=null)        //遍历左子树
        {
            x.ptr = p;
            x.tag = L;         //标记为左子树
            push(s,x);
            p=p->lchild;
        }
  
        while (!StackEmpty(s) && s.Elem[s.top].tag==R) 
        {
            x = pop(s);
            p = x.ptr;
            visite(p->data);   //tag为R,表示右子树访问完毕,故访问根结点     
        }
       
        if (!StackEmpty(s))
        {
            s.Elem[s.top].tag =R;     //遍历右子树
            p=s.Elem[s.top].ptr->rchild;       
        }  
    }while (!StackEmpty(s));
}//PostOrderUnrec

4.前序最简洁非递归算法

void PreOrderUnrec(Bitree *t)
{
       Bitree *p;
       Stack s;
       s.push(t);
       while (!s.IsEmpty())
       {
              s.pop(p);
              visit(p->data);
              if (p->rchild != NULL) s.push(p->rchild);
              if (p->lchild != NULL) s.push(p->lchild);
       }
}

5.后序算法之二

void BT_PostOrderNoRec(pTreeT root)
{
       stack<treeT *> s;
       pTreeT pre=NULL;
       while ((NULL != root) || !s.empty())
       {
              if (NULL != root)
              {
                     s.push(root);
                     root = root->left;
              }
              else
              {
                     root = s.top();
                     if (root->right!=NULL && pre!=root->right){
                            root=root->right;
                     }
                     else{
                            root=pre=s.top();
                            visit(root);
                            s.pop();
                            root=NULL;
                     }
              }
       }
}
posted on 2010-09-23 20:00  漫长路  阅读(867)  评论(1编辑  收藏  举报
宝宝客 www.baobaoke.com