从源码分析:Java中的AQS
获取锁
public final void acquire(int arg) {
// 首先通过tryAcquire尝试获得锁
// 如果未能成功获得锁,则进入acquireQueued
if (!tryAcquire(arg) &&
// 以独占模式生成节点并添加到队列的尾部
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
private Node addWaiter(Node mode) {
// 新建一个节点的实例
Node node = new Node(Thread.currentThread(), mode);
// Try the fast path of enq; backup to full enq on failure
// 获得当前队列的尾部节点
// tail 为AQS的属性
Node pred = tail;
if (pred != null) {
// 如果尾部节点不为null,则将当前节点的前节点设为刚刚获取到的队列的尾节点
node.prev = pred;
// 如果在以上这段时间内,尾节点没有发生过变化,则直接通过CAS设置尾节点
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
// 如果通过CAS设置尾节点失败,则通过循环CAS来设置新的尾节点
enq(node);
return node;
}
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
// 尝试获得前节点,如果获取失败抛出NullPointerException异常
final Node p = node.predecessor();
// 如果前节点是头节点,则tryAcquire()
if (p == head && tryAcquire(arg)) {
// 将该节点设为头节点,同时将该node的thread与prev都设为null
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
//检查并更新无法获取的节点的状态,如果线程应该阻塞,则返回true。
// 这是在acquire循环中的主要信号控制方法,需要pred == node.prev
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
int ws = pred.waitStatus;
if (ws == Node.SIGNAL)
/*
* This node has already set status asking a release
* to signal it, so it can safely park.
*/
// 此节点已设置状态,要求释放信号,因此可以安全停放。
return true;
if (ws > 0) {
/*
* Predecessor was cancelled. Skip over predecessors and
* indicate retry.
*/
// 前节点被取消,则跳过前节点并重试
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0);
pred.next = node;
} else {
/*
* waitStatus must be 0 or PROPAGATE. Indicate that we
* need a signal, but don't park yet. Caller will need to
* retry to make sure it cannot acquire before parking.
*/
// waitStatus必须为0或者PROPAGATE,说明我们需要一个信号,但不需要park。
// 调用者会需要重试来确保在park前不会acquire。
compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
}
return false;
}
// 一个便利方法来实现park并判断是否interrupted
private final boolean parkAndCheckInterrupt() {
LockSupport.park(this);
return Thread.interrupted();
}
释放锁
// 以独占模式释放锁。
public final boolean release(int arg) {
// 首先tryRelease尝试释放锁
if (tryRelease(arg)) {
// 如果释放成功,将当前的头节点取出
Node h = head;
// 如果当前头节点不为空且其waitStatus不为0
if (h != null && h.waitStatus != 0)
//
unparkSuccessor(h);
return true;
}
return false;
}
private void unparkSuccessor(Node node) {
/*
* If status is negative (i.e., possibly needing signal) try
* to clear in anticipation of signalling. It is OK if this
* fails or if status is changed by waiting thread.
*/
// 将当前节点状态归零
int ws = node.waitStatus;
if (ws < 0)
compareAndSetWaitStatus(node, ws, 0);
/*
* Thread to unpark is held in successor, which is normally
* just the next node. But if cancelled or apparently null,
* traverse backwards from tail to find the actual
* non-cancelled successor.
*/
// 取出下一个节点
Node s = node.next;
if (s == null || s.waitStatus > 0) {
s = null;
// 从尾节点不断向前遍历,找到第一个节点(用于唤醒)
for (Node t = tail; t != null && t != node; t = t.prev)
if (t.waitStatus <= 0)
s = t;
}
// 如果此时s指向的节点不为空,则唤醒该节点
if (s != null)
LockSupport.unpark(s.thread);
}