假设式子的最高幂次为k 则只需要测试1到k+1就可以了
原理见 刘汝佳的《算法竞赛入门经典入门指南》 P123
字符串需要自己处理,比较繁琐 一定要细心
代码:
#include <iostream> #include <cstdio> #include <string> #include <cstring> #include <cmath> #include <algorithm> #include <queue> #define ll long long #define lint long long using namespace std; const int N=100005; ll a[N]; ll powerMod(ll x,ll y,ll M) {//cout<<x<<" "<<y<<" "<<M<<endl; ll tmp=1; while(y) { if(y&1) tmp=tmp*x%M; x=x*x%M; y=y>>1; } //cout<<(tmp%M)<<endl; return tmp%M; } void func(string s) {//cout<<s<<endl; if(s.size()==0) return; int m=s.find('n'); if(m==-1) m=s.size(); int type=(s[0]=='-')?-1:1; ll tmp=0; //int l=;cout<<l<<" "<<m<<endl; for(int i=(s[0]=='+'||s[0]=='-')?1:0;i<m;++i) {//cout<<i<<" "<<tmp<<endl; tmp=tmp*10+s[i]-'0'; } if(tmp==0) tmp=1; tmp=tmp*type; m=s.find('n');//cout<<m<<endl; if(m==-1) a[0]=tmp; else {//cout<<"in1"<<endl;return ; int k=s.find('^'); if(k==-1) a[1]=tmp; else {//cout<<"in2"<<endl; int x=0; for(int i=k+1;i<s.size();++i) { x=x*10+s[i]-'0'; } //cout<<x<<" "<<tmp<<endl; a[x]=tmp; } } //cout<<"return"<<endl; } bool solve(string s) { memset(a,0,sizeof(a)); int k=s.find('/'); ll M=0; for(int i=k+1;i<s.length();++i) M=M*10+s[i]-'0'; string stmp; for(int i=(s[0]=='(')?1:0;i<k&&s[i]!=')';++i) { if(s[i]=='+'||s[i]=='-') { func(stmp); stmp.clear(); } stmp.push_back(s[i]); } func(stmp); for(ll i=1;i<=101;++i) {//cout<<i<<endl; ll tmp=0; for(ll j=0;j<=100;++j) { //cout<<j<<" "<<a[j]<<endl; tmp=(tmp+a[j]*powerMod(i,j,M))%M; } if(tmp!=0) return false; } return true; } int main() { //freopen("data.in","r",stdin); int ca=1; string s; while(cin>>s) { if(s==".")break; if(solve(s)) printf("Case %d: Always an integer\n",ca++); else printf("Case %d: Not always an integer\n",ca++); } return 0; }