http://poj.org/problem?id=1584

题意 给你个多边形和一个钉子,让你判断是否 钉子可以放里面

注意  1 ,多边形所给的顺序 可能是逆时针也可能时顺时针

        2 ,钉子可能在多边形外面

        3 ,钉子可能在多边形上

        4 ,先给半径后给圆的坐标

#include<iostream>
#include<cmath>
#include<string>
#include<algorithm>
#include<queue>
#include<cstring>
#include<cstdio>

using namespace std;

const int N=1001;
struct node
{
    double x,y;
}mem[N];
int Leftturn(double x1,double y1,double x2,double y2)//给出两个向量 求往哪转
{
    double ftemp=x1*y2-x2*y1;
    if(ftemp==0.0)//不转
    return 0;
    if(ftemp>0.0)//左转
    return 1;
    return -1;// 右转
}
double Pegx,Pegy,Pegradius;
bool Fit(int i,int j)//求点到线的距离 与半径比较 看是否合适
{
    double x1=mem[i].x-Pegx;
    double y1=mem[i].y-Pegy;
    double x2=mem[j].x-Pegx;
    double y2=mem[j].y-Pegy;
    double temp=fabs(x1*y2-y1*x2)/sqrt((mem[i].x-mem[j].x)*(mem[i].x-mem[j].x)+(mem[i].y-mem[j].y)*(mem[i].y-mem[j].y));
    if(temp-Pegradius>=0.0)
    return true;
    return false;
}
int main()
{
    int n;
    while(scanf("%d",&n)!=EOF)
    {
        if(n<3)
        break;
        scanf("%lf %lf %lf",&Pegradius,&Pegx,&Pegy);
        for(int i=1;i<=n;++i)
        {
            scanf("%lf %lf",&mem[i].x,&mem[i].y);
        }
        mem[0].x=mem[n].x;
        mem[0].y=mem[n].y;
        mem[n+1].x=mem[1].x;
        mem[n+1].y=mem[1].y;
        int i;
        for(i=0;i<n;++i)
        {
            if(Leftturn(mem[i+1].x-mem[i].x,mem[i+1].y-mem[i].y,mem[i+2].x-mem[i+1].x,mem[i+2].y-mem[i+1].y)<0)
            break;
        }
        int j;
        for(j=0;j<n;++j)
        {
            if(Leftturn(mem[j+1].x-mem[j].x,mem[j+1].y-mem[j].y,mem[j+2].x-mem[j+1].x,mem[j+2].y-mem[j+1].y)>0)
            break;
        }
        if(i<n&&j<n)//既存在左转 又存在右转 则一定突出
        {
            printf("HOLE IS ILL-FORMED\n");
            continue;
        }
        if(i<n&&j==n)//如果只有右转 没有左转 说明点的顺序是顺时针 应该颠倒过来 以便后面求解
        {
            reverse(mem,mem+n+2);
        }
        for(i=0;i<n;++i)
        {
            if(Leftturn(Pegx-mem[i].x,Pegy-mem[i].y,mem[i+1].x-Pegx,mem[i+1].y-Pegy)>0)//点在三角形内部的话 则一定<=0
            break;
            if(!Fit(i,i+1))//根据点到直线距离 和 圆半径的比较 看是否合适
            break;
        }
        if(i<n)
        {
            printf("PEG WILL NOT FIT\n");
        }
        else
        {
            printf("PEG WILL FIT\n");
        }
    }
    return 0;
}

 

posted on 2012-05-19 17:55  夜->  阅读(122)  评论(0编辑  收藏  举报