排序算法 之 归并排序

归并排序也是基于分治思想的一种排序算法,是通过对两个或两个以上的有序序列合并来实现的,对两个序列合并的叫两路归并,对两个以上序列合并的叫多路归并。归并排序的时间复杂度也为O(N*logN)。下面来看一下两路归并的实现:

基本思想:归并排序时先找出序列的中间元素把序列分解为两个子序列,对子序列重复这个过程直至把序列分解成为只包含单个元素的序列,然后把相邻的序列两两合并使之有序,重复两两合并直至合并成为一个序列归并结束序列有序。

代码实现:

/// <summary>
/// 归并排序
/// </summary>
/// <param name="intArray"></param>
/// <param name="left"></param>
/// <param name="right"></param>
public static void MergeSort(int[] intArray, int left, int right)
{
    if (left < right)
    {
        int mid = (left + right) / 2;
        MergeSort(intArray, left, mid);
        MergeSort(intArray, mid + 1, right);

        int[] temp = new int[right - left + 1];
        int i = left, j = mid + 1, k = right, index = 0;
        //同时循环数组的前半部分和后半部分并比较
        while (i <= mid && j <= k)
        {
            if (intArray[i] <= intArray[j])
                temp[index++] = intArray[i++];
            else
                temp[index++] = intArray[j++];
        }
        //如果前半部分没有循环完
        while (i <= mid)
        {
            temp[index++] = intArray[i++];
        }
        //如果后半部分没有循环完
        while (j <= k)
        {
            temp[index++] = intArray[j++];
        }
        //把临时数组中的元素按顺序拷贝回原数组
        for (int copyIndex = 0; copyIndex < index; copyIndex++)
        {
            intArray[left + copyIndex] = temp[copyIndex];
        }
    }
}

当调用时left传入序列开始的下标即0,right传入序列结束的下标即(长度-1);

以上就是归并排序的实现。

posted @ 2014-05-10 22:35  Erola  阅读(609)  评论(0编辑  收藏  举报