1.进入vi的命令

 
vi filename :打开或新建文件,并将光标置于第一行首
vi n filename :打开文件,并将光标置于第n行首
vi filename :打开文件,并将光标置于一行首
vi /pattern filename:打开文件,并将光标置于第一个与pattern匹配的串处
vi -r filename :在上次正用vi编辑时发生系统崩溃,恢复filename
vi filename....filename :打开多个文件,依次进行编辑
 
移动光标类命令
 
h :光标左移一个字符
l :光标右移一个字符
space:光标右移一个字符
Backspace:光标左移一个字符
k或Ctrl p:光标上移一行
j或Ctrl n :光标下移一行
Enter :光标下移一行
w或W :光标右移一个字至字首
b或B :光标左移一个字至字首
e或E :光标右移一个字至字尾
) :光标移至句尾
( :光标移至句首
}:光标移至段落开头
{:光标移至段落结尾
nG:光标移至第n行首
n :光标下移n行
n-:光标上移n行
n$:光标移至第n行尾
H :光标移至屏幕顶行
M :光标移至屏幕中间行
L :光标移至屏幕行
0:(注意是数字零)光标移至当前行首
$:光标移至当前行尾
 
屏幕翻滚类命令
 
Ctrl u:向文件首翻半屏
Ctrl d:向文件尾翻半屏
Ctrl f:向文件尾翻一屏
Ctrl+b;向文件首翻一屏
nz:将第n行滚至屏幕顶部,不指定n时将当前行滚至屏幕顶部.
 
插入文本类命令
 
i :在光标前
I :在当前行首
a:光标后
A:在当前行尾
o:在当前行之下新开一行
O:在当前行之上新开一行
r:替换当前字符
R:替换当前字符及其后的字符,直至按ESC键
s:从当前光标位置处开始,以输入的文本替代指定数目的字符
 
保存命令
 
按ESC键 跳到命令模式,然后:
 
:w   保存文件但不退出vi
:w file 将修改另外保存到file中,不退出vi
:w!   强制保存,不推出vi
:wq  保存文件并退出vi
:wq! 强制保存文件,并退出vi
q:  不保存文件,退出vi
:q! 不保存文件,强制退出vi
:e! 放弃所有修改,从上次保存文件开始再编辑
 
之后,回车,ok!
 
进入vi的命令
 
vi filename :打开或新建文件,并将光标置于第一行首
vi n filename :打开文件,并将光标置于第n行首
vi filename :打开文件,并将光标置于一行首
vi /pattern filename:打开文件,并将光标置于第一个与pattern匹配的串处
vi -r filename :在上次正用vi编辑时发生系统崩溃,恢复filename
vi filename....filename :打开多个文件,依次进行编辑
  www.2cto.com  
移动光标类命令
 
h :光标左移一个字符
l :光标右移一个字符
space:光标右移一个字符
Backspace:光标左移一个字符
k或Ctrl p:光标上移一行
j或Ctrl n :光标下移一行
Enter :光标下移一行
w或W :光标右移一个字至字首
b或B :光标左移一个字至字首
e或E :光标右移一个字至字尾
) :光标移至句尾
( :光标移至句首
}:光标移至段落开头
{:光标移至段落结尾
nG:光标移至第n行首
n :光标下移n行
n-:光标上移n行
n$:光标移至第n行尾
H :光标移至屏幕顶行
M :光标移至屏幕中间行
L :光标移至屏幕行
0:(注意是数字零)光标移至当前行首
$:光标移至当前行尾
  www.2cto.com  
屏幕翻滚类命令
 
Ctrl u:向文件首翻半屏
Ctrl d:向文件尾翻半屏
Ctrl f:向文件尾翻一屏
Ctrl+b;向文件首翻一屏
nz:将第n行滚至屏幕顶部,不指定n时将当前行滚至屏幕顶部.
 
插入文本类命令
 
i :在光标前
I :在当前行首
a:光标后
A:在当前行尾
o:在当前行之下新开一行
O:在当前行之上新开一行
r:替换当前字符
R:替换当前字符及其后的字符,直至按ESC键
s:从当前光标位置处开始,以输入的文本替代指定数目的字符
 
保存命令
 
按ESC键 跳到命令模式,然后:
  www.2cto.com  
:w   保存文件但不退出vi
:w file 将修改另外保存到file中,不退出vi
:w!   强制保存,不推出vi
:wq  保存文件并退出vi
:wq! 强制保存文件,并退出vi
q:  不保存文件,退出vi
:q! 不保存文件,强制退出vi
:e! 放弃所有修改,从上次保存文件开始再编辑
 
之后,回车,ok!
2.

GCC 的意思也只是 GNU C Compiler 而已。经过了这么多年的发展,GCC 已经不仅仅能支持 C 语言;它现在还支持 Ada 语言、C++ 语言、Java 语言、Objective C 语言、Pascal 语言、COBOL语言,以及支持函数式编程和逻辑编程的 Mercury 语言,等等。而 GCC 也不再单只是 GNU C 语言编译器的意思了,而是变成了 GNU Compiler Collection 也即是 GNU 编译器家族的意思了。另一方面,说到 GCC 对于操作系统平台及硬件平台支持,概括起来就是一句话:无所不在。

2:简单的进行编译

a:先建一个空的文件:touch  test.c

b:输入 vi  test.c命令进入到文件中输入以下代码

//test.c

#include<stdio.h>

int main(void)

{

  printf("hello world\n");

return 0;

}

按ESC键,并输入:wq

输入命令 gcc test.c  -o  test

再输入./test

就会显示“hello world”。

2.1预处理
gcc -E test.c -o test.i 或 gcc -E test.c

 

可以输出test.i文件中存放着test.c经预处理之后的代码。打开test.i文件,看一看,就明白了。后面那条指令,是直接在命令行窗口中输出预处理后的代码.

gcc的-E选项,可以让编译器在预处理后停止,并输出预处理结果。在本例中,预处理结果就是将stdio.h 文件中的内容插入到test.c中了。

2.2编译为汇编代码(Compilation)

预处理之后,可直接对生成的test.i文件编译,生成汇编代码:

gcc -S test.i -o test.s
2.3汇编(Assembly)

对于上一小节中生成的汇编代码文件test.s,gas汇编器负责将其编译为目标文件,如下:

gcc -c test.s -o test.o
2.4连接(Linking)

gcc连接器是gas提供的,负责将程序的目标文件与所需的所有附加的目标文件连接起来,最终生成可执行文件。附加的目标文件包括静态连接库和动态连接库。

对于上一小节中生成的test.o,将其与C标准输入输出库进行连接,最终生成程序test

gcc test.o -o test

 

在命令行窗口中,执行./test, 让它说HelloWorld吧!

多个程序文件的编译

通常整个程序是由多个源文件组成的,相应地也就形成了多个编译单元,使用GCC能够很好地管理这些编译单元。假设有一个由test1.c和 test2.c两个源文件组成的程序,为了对它们进行编译,并最终生成可执行程序test,可以使用下面这条命令:

gcc test1.c test2.c -o test

如果同时处理的文件不止一个,GCC仍然会按照预处理、编译和链接的过程依次进行。如果深究起来,上面这条命令大致相当于依次执行如下三条命令:

gcc -c test1.c -o test1.o gcc -c test2.c -o test2.o gcc test1.o test2.o -o test



4检错

gcc -pedantic illcode.c -o illcode

-pedantic编译选项并不能保证被编译程序与ANSI/ISO C标准的完全兼容,它仅仅只能用来帮助Linux程序员离这个目标越来越近。或者换句话说,-pedantic选项能够帮助程序员发现一些不符合 ANSI/ISO C标准的代码,但不是全部,事实上只有ANSI/ISO C语言标准中要求进行编译器诊断的那些情况,才有可能被GCC发现并提出警告。

除了-pedantic之外,GCC还有一些其它编译选项也能够产生有用的警告信息。这些选项大多以-W开头,其中最有价值的当数-Wall了,使用它能够使GCC产生尽可能多的警告信息。

gcc -Wall illcode.c -o illcode

GCC给出的警告信息虽然从严格意义上说不能算作错误,但却很可能成为错误的栖身之所。一个优秀的Linux程序员应该尽量避免产生警告信息,使自己的代码始终保持标准、健壮的特性。所以将警告信息当成编码错误来对待,是一种值得赞扬的行为!所以,在编译程序时带上-Werror选项,那么GCC会在所有产生警告的地方停止编译,迫使程序员对自己的代码进行修改,如下:

gcc -Werror test.c -o test

 

 

5库文件连接

开发软件时,完全不使用第三方函数库的情况是比较少见的,通常来讲都需要借助许多函数库的支持才能够完成相应的功能。从程序员的角度看,函数库实际上就是一些头文件(.h)和库文件(so、或lib、dll)的集合。。虽然Linux下的大多数函数都默认将头文件放到/usr/include/目录下,而库文件则放到/usr/lib/目录下;Windows所使用的库文件主要放在Visual Stido的目录下的include和lib,以及系统文件夹下。但也有的时候,我们要用的库不再这些目录下,所以GCC在编译时必须用自己的办法来查找所需要的头文件和库文件。

例如我们的程序test.c是在linux上使用c连接mysql,这个时候我们需要去mysql官网下载MySQL Connectors的C库,下载下来解压之后,有一个include文件夹,里面包含mysql connectors的头文件,还有一个lib文件夹,里面包含二进制so文件libmysqlclient.so

其中inclulde文件夹的路径是/usr/dev/mysql/include,lib文件夹是/usr/dev/mysql/lib

 

 

首先我们要进行编译test.c为目标文件,这个时候需要执行

gcc –c –I /usr/dev/mysql/include test.c –o test.o
 

最后我们把所有目标文件链接成可执行文件:

gcc –L /usr/dev/mysql/lib –lmysqlclient test.o –o test

Linux下的库文件分为两大类分别是动态链接库(通常以.so结尾)和静态链接库(通常以.a结尾),二者的区别仅在于程序执行时所需的代码是在运行时动态加载的,还是在编译时静态加载的。

 

默认情况下, GCC在链接时优先使用动态链接库,只有当动态链接库不存在时才考虑使用静态链接库,如果需要的话可以在编译时加上-static选项,强制使用静态链接库。

在/usr/dev/mysql/lib目录下有链接时所需要的库文件libmysqlclient.so和libmysqlclient.a,为了让GCC在链接时只用到静态链接库,可以使用命令:

gcc –L /usr/dev/mysql/lib –static –lmysqlclient test.o –o test
3.make

在 Linux环境下使用 GNU 的 make工具能够比较容易的构建一个属于你自己的工程,整个工程的编译只需要一个命令就可以完成编译、连接以至于最后的执行。不过这需要我们投入一些时间去完成一个或者多个称之为 Makefile 文件的编写。此文件正是 make 正常工作的基础。

make 是一个命令工具,它解释 Makefile 中的指令(应该说是规则)。在 Makefile文件中描述了整个工程所有文件的编译顺序、编译规则。

准备知识:编译,链接,静态库,共享库

编译:把高级语言所书写的代码转换成机器可识别的指令,此时还不能够被执行,编译器通过检查高级语言的语法,函数和变量的声明是否正确!如果正确则产生中间目标文件(目标文件在Liunx中默认后缀为“.o”)

链接:将多.o 文件,或者.o 文件和库文件链接成为可被操作系统执行的可执行程序

静态库:又称为文档文件(Archive File) 。它是多个.o文件的集合。Linux中静态库文件的后缀为“.a”

共享库:也是多个.o 文件的集合,但是这些.o 文件时有编译器按照一种特殊的方式生成(共享库已经具备了可执行条件)

 

在执行 make  之前,需要一个命名为 Makefile  的特殊文件(本文的后续将使用Makefile 作为这个特殊文件的文件名)来告诉 make 需要做什么(完成什么任务),该怎么做。

    当使用make 工具进行编译时,工程中以下几种文件在执行make 时将会被编译(重新编译):

1.所有的源文件没有被编译过,则对各个 C 源文件进行编译并进行链接,生成最后的可执行程序;

2.每一个在上次执行 make 之后修改过的 C 源代码文件在本次执行make 时将会被重新编译;

3.头文件在上一次执行make 之后被修改。则所有包含此头文件的 C 源文件在本次执make 时将会被重新编译。

 

 

Makefile规则介绍

    一个简单的 Makefile 描述规则组成:

      TARGET... : PREREQUISITES...

            COMMAND

            ...

            ...

    target:规则的目标。通常是最后需要生成的文件名或者为了实现这个目的而必需的中间过程文件名。可以是.o文件、也可以是最后的可执行程序的文件名等。另外,目标也可以是一个make执行的动作的名称,如目标“clean”(目标“clean”不是一个文件,它仅仅代表执行一个动作的标识。),我们称这样的目标是“伪目标”。

    prerequisites:规则的依赖。生成规则目标所需要的文件名列表。通常一个目标依赖于一个或者多个文件。

    command:规则的命令行。是规则所要执行的动作(任意的shell 命令或者是可在shell 下执行的程序)。它限定了make 执行这条规则时所需要的动作。

    一个规则可以有多个命令行,每一条命令占一行。注意:每一个命令行必须以[Tab] 字符开始,[Tab]字符告诉 make 此行是一个命令行。make 按照命令完成相应的动作。

这也是书写 Makefile 中容易产生,而且比较隐蔽的错误。

    命令就是在任何一个目标的依赖文件发生变化后重建目标的动作描述。一个目标可以没有依赖而只有动作(指定的命令)。比如Makefile 中的目标“clean”,此目标没有依赖,只有命令。它所定义的命令用来删除 make 过程产生的中间文件(进行清理工作)。

    在 Makefile  中“规则”就是描述在什么情况下、如何重建规则的目标文件,通常规则中包括了目标的依赖关系(目标的依赖文件)和重建目标的命令。make 执行重建目标的命令,来创建或者重建规则的目标(此目标文件也可以是触发这个规则的上一个规则中的依赖文件)。规则包含了文件之间的依赖关系和更新此规则目标所需要的命令。

    一个 Makefile 文件中通常还包含了除规则以外的很多东西(后续我们会一步一步的展开)。一个最简单的Makefile 可能只包含规则。规则在有些 Makefile 中可能看起来非常复杂,但是无论规则的书写是多么的复杂,它都符合规则的基本格式。

    make 程序根据规则的依赖关系,决定是否执行规则所定义的命令的过程我们称之为执行规则。

 

简单的示例

一个简单的Makefile,来描述如何创建最终的可执行文件“edit”,此可执行文件依赖于8个C源文件和3个头文件。Makefile文件的内容如下:

      #sample Makefile

        edit : main.o kbd.o command.o display.o \

              insert.o search.o files.o utils.o

            cc -o edit main.o kbd.o command.o display.o \

                  insert.o search.o files.o utils.o

      main.o : main.c defs.h

            cc -c main.c

      kbd.o : kbd.c defs.h command.h

            cc -c kbd.c

      command.o : command.c defs.h command.h

            cc -c command.c

      display.o : display.c defs.h buffer.h

            cc -c display.c

      insert.o : insert.c defs.h buffer.h

            cc -c insert.c

      search.o : search.c defs.h buffer.h

            cc -c search.c

      files.o : files.c defs.h buffer.h command.h

            cc -c files.c

      utils.o : utils.c defs.h

            cc -c utils.c

      clean :

            rm edit main.o kbd.o command.o display.o \

                  insert.o search.o files.o utils.o

 

首先书写时,可以将一个较长行使用反斜线(\ )来分解为多行。但需要注意:反斜线之后不能有空格(这也是大 家最容易犯的错误,错误比较隐蔽)。

在完成了这个Maekfile以后;需要创建可执行程序“edit”,所要做的就是在包含此Makefile的目录(当然也在代码所在的目录)下输入命令“make”。删除已经此目录下之前使用“make”生成的文件(包括那些中间过程的.o文件),也只需要输入命令“make clean”就可以了。

 

 make如何工作

    默认的情况下,make执行的是Makefile中的第一个规则,此规则的第一个目标称之为“最终目的”或者“终极目标”(就是一个Makefile最终需要更新或者创建的目标)。

    上例的 Makefile,目标“edit”在 Makefile 中是第一个目标,因此它就是make 的

 “终极目标”。当修改了任何C 源文件或者头文件后,执行 make  将会重建终极目标

 “edit”。

 

当在shell 提示符下输入“make”命令以后。make 读取当前目录下的 Makefile 文件,并将 Makefile 文件中的第一个目标作为其执行的“终极目标”,开始处理第一个规则(终极目标所在的规则)。在上例中,第一个规则就是目标“edit”所在的规则。规则描述了“edit”的依赖关系,并定义了链接.o 文件生成目标“edit”的命令; make在执行这个规则所定义的命令之前,首先处理目标“edit”的所有的依赖文件(例子中的那些.o 文件)的更新规则(以这些.o 文件为目标的规则)。对这些.o 文件为目标的规则处理有下列三种情况:

  1.  目标.o 文件不存在,使用其描述规则创建它;

  2.  目标.o 文件存在,目标.o 文件所依赖的.c 源文件、.h 文件中的任何一个比目标.o文件“更新”(在上一次 make 之后被修改)。则根据规则重新编译生成它;

  3.  目标.o 文件存在,目标.o 文件比它的任何一个依赖文件(的.c 源文件、.h 文件) “更新”(它的依赖文件在上一次make 之后没有被修改),则什么也不做。

    这些.o  文件所在的规则之所以会被执行,是因为这些.o  文件出现在“终极目标”的依赖列表中。在 Makefile  中一个规则的目标如果不是“终极目标”所依赖的(或者“终极目标”的依赖文件所依赖的),那么这个规则将不会被执行,除非明确指定执行这个规则(可以通过 make 的命令行指定重建目标,那么这个目标所在的规则就会被执行,例如    “make  clean”)。在编译或者重新编译生成一个.o 文件时,make 同样会去寻找它的依赖文件的重建规则(是这样一个规则:这个依赖文件在规则中作为目标出现),在这里就是.c 和.h 文件的重建规则。在上例的 Makefile 中没有哪个规则的目标是.c或者.h 文件,所以没有重建.c 和.h 文件的规则

    完成了对.o 文件的创建(第一次编译)或者更新之后,make 程序将处理终极目标“edit”所在的规则,分为以下三种情况:

  1.  目标文件“edit”不存在,则执行规则以创建目标“edit”。

  2.  目标文件“edit”存在,其依赖文件中有一个或者多个文件比它“更新”,则根据规则重新链接生成“edit”。

  3.  目标文件“edit”存在,它比它的任何一个依赖文件都“更新”,则什么也不做。

上例中,如果更改了源文件“insert.c”后执行make,“insert.o”将被更新,之后终极目标“edit”将会被重生成;如果我们修改了头文件“command.h”之后运行“make”,那么“kbd.o”、“command.o”和“files.o”将会被重新编译,之后同样终极目标“edit”也将被重新生成。

 

指定变量

“objects”作为一个变量,它代表所有的.o文件的列表。在定义了此变量后,我们就可以在需要使用这些.o文件列表的地方使用“$(objects)”来表示��,而不需要罗列所有的.o文件列表。

 

make如何解析makefile文件

GUN make 的执行过程分为两个阶段。

    第一阶段:读取所有的 makefile 文件(包括“MAKIFILES”变量指定的、指示符“include”指定的、以及命令行选项“-f(--file)”指定的 makefile  文件),内建所有的变量、明确规则和隐含规则,并建立所有目标和依赖之间的依赖关系结构链表。

第二阶段:根据第一阶段已经建立的依赖关系结构链表决定哪些目标需要更新,并使用对应的规则来重建这些目标。

 

总结

 make 的执行过程如下:

1.依次读取变量“MAKEFILES”定义的 makefile 文件列表

2.读取工作目录下的 makefile文件(根据命名的查找顺序“GNUmakefile”, “makefile”,“Makefile”,首先找到那个就读取那个)

3.依次读取工作目录 makefile 文件中使用指示符“include”包含的文件

4.查找重建所有已读取的 makefile 文件的规则(如果存在一个目标是当前读取的 某一个makefile 文件,则执行此规则重建此 makefile 文件,完成以后从第一步开始重新执行)

5.初始化变量值并展开那些需要立即展开的变量和函数并根据预设条件确定执行分支

6.根据“终极目标”以及其他目标的依赖关系建立依赖关系链表

7.执行除“终极目标”以外的所有的目标的规则(规则中如果依赖文件中任一个 文件的时间戳比目标文件新,则使用规则所定义的命令重建目标文件)

8.执行“终极目标”所在的规则

 

说明:

执行一个规则的过程是这样的:

  对于一个存在的规则(明确规则和隐含规则)首先,make程序将比较目标文件和所有的依赖文件的时间戳。如果目标的时间戳比所有依赖文件的时间戳更新(依赖文件在上一次执行make之后没有被修改),那么什么也不做。否则(依赖文件中的某一个或者全部在上一次执行make后已经被修改过),规则所定义的重建目标的命令将会被执行。这就是make工作的基础,也是其执行规制所定 义命令的依据。