Threads
import asyncio
def compute_pi(digits):
# implementation
return 3.14
async def main(loop):
digits = await loop.run_in_executor(None, compute_pi, 20000)
print("pi: %s" % digits)
loop = asyncio.get_event_loop()
loop.run_until_complete(main(loop))
loop.close()
# AbstractEventLoop.run_in_executor(executor, func, *args)
# Executor (pool of threads or pool of processes)
Subprocess
Run a subprocess and read its output
import asyncio
async def run_command(*args):
# Create subprocess
process = await asyncio.create_subprocess_exec(
*args,
# stdout must a pipe to be accessible as process.stdout
stdout=asyncio.subprocess.PIPE)
# Wait for the subprocess to finish
stdout, stderr = await process.communicate()
# Return stdout
return stdout.decode().strip()
loop = asyncio.get_event_loop()
# Gather uname and date commands
commands = asyncio.gather(run_command('uname'), run_command('date'))
# Run the commands
uname, date = loop.run_until_complete(commands)
# Print a report
print('uname: {}, date: {}'.format(uname, date))
loop.close()
Communicate with a subprocess using standard streams
import asyncio
async def echo(msg):
# Run an echo subprocess
process = await asyncio.create_subprocess_exec(
'cat',
# stdin must a pipe to be accessible as process.stdin
stdin=asyncio.subprocess.PIPE,
# stdout must a pipe to be accessible as process.stdout
stdout=asyncio.subprocess.PIPE)
# Write message
print('Writing {!r} ...'.format(msg))
process.stdin.write(msg.encode() + b'\n')
# Read reply
data = await process.stdout.readline()
reply = data.decode().strip()
print('Received {!r}'.format(reply))
# Stop the subprocess
process.terminate()
code = await process.wait()
print('Terminated with code {}'.format(code))
loop = asyncio.get_event_loop()
loop.run_until_complete(echo('hello!'))
loop.close()
标签:
python
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 【译】Visual Studio 中新的强大生产力特性
· 【设计模式】告别冗长if-else语句:使用策略模式优化代码结构
· AI与.NET技术实操系列(六):基于图像分类模型对图像进行分类
2015-03-19 centreon-engine 性能调优