【实时数仓】Day04-DWS层业务:DWS设计、访客宽表、商品主题宽表、流合并、地区主题表、FlinkSQL、关键词主题表、分词

一、DWS层与DWM设计

1、思路

之前已经进行分流

但只需要一些指标进行实时计算,将这些指标以主题宽表的形式输出

2、需求

访客、商品、地区、关键词四层的需求(可视化大屏展示、多维分析)

 

 3、DWS层定位

轻度聚合、主题中管理

二、DWS层-访客主题宽表的计算

DWS表主要包含维度表和事实表

维度表主要包括渠道、地区、版本、新老用户等

事实表主要包括PV、UV、跳出次数、进入页面数(session_count)、连续访问时长等

1、需求分析

合并接收到的数据流,按时间窗口聚合,并将聚合结果写入数据库

2、实现

(1)读取kafka各个流的数据

page_log、dwm_uv、dwm_jump_user跳出用户

(2)合并读取到的数据流

使用union合并两个结构相同的数据流

需要提前调整数据结构封装主题宽表实体类(两个待合并的流也都要是这样的结构)

userJumpDStream.map实现转换

合并4条输入的流:

uniqueVisitStatsDstream.union(
pageViewStatsDstream,
sessionVisitDstream,
userJumpStatDstream
);

(3)根据维度进行聚合

设置时间标记及水位线

4个维度作为key,使用tuple4组合,进行分组,.keyBy(new KeySelector

reduce窗口内聚合,并补充时间字段

(4)写入OLAP数据库ClickHouse

专门解决大量数据统计分析的数据库,在保证了海量数据存储的能力,同时又兼顾了响应速度

先建表,使用 ReplacingMergeTree 引擎来保证幂等性

将日期变为数字作为分区类型

编写ClickhouseUtils工具类

创建 TransientSink 注解,标记不需要保存的字段

配置连接地址类,并增加写入OLAP的sink

查看控制台输出及表中数据 visitor_stats_2021

三、商品主题宽表

 把多个事实表的明细数据汇总起来组合成宽表

1、需求及思路

获取数据流并转换为统一的数据对象格式

将统一数据结构合并为一个流

设定事件时间与水位线,分组、开窗、聚合

关联维度表补充数据

写入ClickHouse

2、功能实现

建商品统计实体类(各种业务数据的统计),并给必要字段添加@Builder.Default注解,各类添加@Builder注解(构造方法)

kafka中获取指定的流:FlinkKafkaConsumer<String> pageViewSource = MyKafkaUtil.getKafkaSource(pageViewSourceTopic,groupId);

对各种流数据进行结构转换,转换为构建的实体类

创建电商业务常量类 GmallConstant,类似维度表,用一个数字表示一个字符串

将统一的数据结构合并为一个流

设定事件时间与水位线

按商品id分组,10秒的窗口进行开窗window(TumblingEventTimeWindows.of(Time.seconds(10)))

补充商品维度、SKU维度、品类维度、品牌维度等信息

SingleOutputStreamOperator<ProductStats> productStatsWithTmDstream =
 AsyncDataStream.unorderedWait(productStatsWithCategory3Dstream,
 new DimAsyncFunction<ProductStats>("DIM_BASE_TRADEMARK") {
 @Override
 public void join(ProductStats productStats, JSONObject jsonObject) throws 
Exception {
 productStats.setTm_name(jsonObject.getString("TM_NAME"));
 }
 @Override
 public String getKey(ProductStats productStats) {
 return String.valueOf(productStats.getTm_id());
 }
 }, 60, TimeUnit.SECONDS);
productStatsWithTmDstream.print("to save");

ClickHouse中创建商品主题宽表,添加写入ch的sink  

//TODO 7.写入到 ClickHouse
productStatsWithTmDstream.addSink(
 ClickHouseUtil.<ProductStats>getJdbcSink(
"insert into product_stats_2021 values(?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?)"));

查看ClickHouse表中的数据

四、地区主题表(Flink SQL)

 

1、需求分析

定义 Table 流环境,把数据源定义为动态表

通过 SQL 查询出结果表并转换为数据流

将数据流写入目标数据库

2、功能实现

(1)添加FlinkSQL依赖

(2)定义 Table 流环境StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env, settings);

(3)将数据源topic定义为动态表WITH (" + MyKafkaUtil.getKafkaDDL(orderWideTopic, groupId) + ")");

WATERMARK FOR rowtime AS rowtime 是把某个虚拟字段设定为 EVENT_TIME

(4)拼接 Kafka 相关属性到 DDL

(5)做聚合运算

Env.sqlQuery("select " +……并将其转换为数据流

DataStream<ProvinceStats> provinceStatsDataStream =
tableEnv.toAppendStream(provinceStateTable, ProvinceStats.class);

(6)定义地区统计宽表实体类并写入到ClickHouse(addSink)

五、关键词主题表(Flink SQL)

1、需求分析

维度聚合决定关键词的大小

来源:用户在搜索框中的搜索、以商品为主题的统计中获取

2、搜索关键词的实现

(1)使用IK分词器对字符串进行分词

(2)编写自定义函数,将分词器加入FlinkSQL中

Flink的自定义函数包括:Scalar Function(相当于 Spark 的 UDF)、Table Function(相当于 Spark 的 UDTF)、Aggregation Functions (相当于 Spark 的 UDAF)

由于分词是一对多的拆分,应该选择TableFunction

封装 KeywordUDTF 函数,自定义UDTF,继承TableFunction

(3)定义Table流环境

(4)注册自定义函数,将数据源定义为动态表

(5)过滤非空数据 tableEnv.sqlQuery

(6)利用 UDTF 进行拆分(SQL内部)LATERAL TABLE(ik_analyze(fullword)) as T(keyword)");

(7)聚合,根据各个关键词出现次数进行 ct

(8)转换为流并写入 ClickHouse

建表、封装实体类、添加sink

六、总结

1、DWS 层主要是基于 DWD 和 DWM 层的数据进行轻度聚合统计

2、利用 union 操作实现多流的合并

3、窗口聚合操作

4、对 clickhouse 数据库的写入操作

5、FlinkSQL 实现业务

6、分词器的使用

7、在 FlinkSQL 中自定义函数的使用

posted @ 2022-01-09 13:00  哥们要飞  阅读(591)  评论(0编辑  收藏  举报