大数据Hadoop之——搭建本地flink开发环境详解(window10)

一、下载安装IDEA

IDEA2020.2.3版本:https://www.cnblogs.com/liugp/p/13868346.html
最新版本安装详情请参考:https://www.jb51.net/article/196349.htm

二、搭建本地hadoop环境(window10)

可以看我之前的文章:大数据Hadoop之——部署hadoop+hive环境(window10环境)
当然也可以部署在linux系统上,远程连接,可以参考以下两篇文章:
大数据Hadoop原理介绍+安装+实战操作(HDFS+YARN+MapReduce)
大数据Hadoop之——数据仓库Hive

三、安装Maven

可以看我之前的文章:Java-Maven详解

四、新建项目和模块

1)新建maven项目

因为之前我创建过了,所以会标红

把自动生成的src删掉,以后是通过模块来管理项目,因为一个项目一般会包含很多模块。

2)新建flink模块


目录结构,新建没有的目录

设置目录属性

因为之前创建过项目,所以这里创建一个新项目来演示:bigdata-test2023

五、配置IDEA环境(scala)

1)下载安装scala插件

File-》Settings

intellij IDEA本来是不能开发Scala程序的,但是通过配置是可以的,我之前已经装过了,没装过的小伙伴,点击这里安装即可。

2)配置scala插件到模块或者全局环境




添加完scala插件之后就可以创建scala项目了

3)创建scala项目

创建Object类

【温馨提示】类只会被编译,不能直接被执行。

4)DataStream API配置

1、Maven配置

在flink模块目录下pom.xml配置如下内容:

【温馨提示】这里的scala版本要与上面插件版本一致

<dependency>
	<groupId>org.apache.flink</groupId>
	<artifactId>flink-scala_2.12</artifactId>
	<version>1.14.3</version>
	<scope>provided</scope>
</dependency>

<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-streaming-scala -->
<dependency>
	<groupId>org.apache.flink</groupId>
	<artifactId>flink-streaming-scala_2.12</artifactId>
	<version>1.14.3</version>
	<scope>provided</scope>
</dependency>

<dependency>
	<groupId>org.apache.flink</groupId>
	<artifactId>flink-streaming-scala_2.12</artifactId>
	<version>1.14.3</version>
	<scope>provided</scope>
</dependency>

【问题】IDEA 在使用Maven项目时,未加载 provided 范围的依赖包,导致启动时报错
【原因】就是 Run Application时,IDEA未加载 provided 范围的依赖包,导致启动时报错,这是IDEA的bug
【解决】在IDEA中设置

2、示例演示

官网示例

package com
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows
import org.apache.flink.streaming.api.windowing.time.Time

object WindowWordCount {
  def main(args: Array[String]) {

    val env = StreamExecutionEnvironment.getExecutionEnvironment
    val text = env.socketTextStream("localhost", 9999)

    val counts = text.flatMap { _.toLowerCase.split("\\W+") filter { _.nonEmpty } }
      .map { (_, 1) }
      .keyBy(_._1)
      .window(TumblingProcessingTimeWindows.of(Time.seconds(5)))
      .sum(1)

    counts.print()

    env.execute("Window Stream WordCount")
  }
}

在命令行起一个9999端口的服务

$ nc -lk 9999

运行测试

5)Table API & SQL配置

1、Maven配置

<dependency>
	<groupId>org.apache.flink</groupId>
	<artifactId>flink-table-planner_2.12</artifactId>
	<version>1.14.3</version>
	<scope>provided</scope>
</dependency>
<dependency>
	<groupId>org.apache.flink</groupId>
	<artifactId>flink-streaming-scala_2.12</artifactId>
	<version>1.14.3</version>
	<scope>provided</scope>
</dependency>
<dependency>
	<groupId>org.apache.flink</groupId>
	<artifactId>flink-table-common</artifactId>
	<version>1.14.3</version>
	<scope>provided</scope>
</dependency>

2、示例演示

这里使用filesystem,不需要引用相应得maven配置,像kafka,ES等连接器是需要引入相应的maven配置,但是这里使用到了format csv,所以得引入相应得配置,配置如下:

更多连接器的介绍,你看官方文档

<!-- format csv 下面会用到-->
<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-csv</artifactId>
    <version>1.14.3</version>
</dependency>

源码

package com

import org.apache.flink.table.api._

object TableSQL {
  def main(args: Array[String]): Unit = {
    val settings = EnvironmentSettings.inStreamingMode()
    val tableEnv = TableEnvironment.create(settings)

    // create an output Table
    val schema = Schema.newBuilder()
      .column("a", DataTypes.STRING())
      .column("b", DataTypes.STRING())
      .column("c", DataTypes.STRING())
      .build()

    tableEnv.createTemporaryTable("CsvSourceTable", TableDescriptor.forConnector("filesystem")
      .schema(schema)
      .option("path", "flink/data/source")
      .format(FormatDescriptor.forFormat("csv")
        .option("field-delimiter", "|")
        .build())
      .build())

    tableEnv.createTemporaryTable("CsvSinkTable", TableDescriptor.forConnector("filesystem")
      .schema(schema)
      .option("path", "flink/data/")
      .format(FormatDescriptor.forFormat("csv")
        .option("field-delimiter", "|")
        .build())
      .build())

    // 创建一个查询语句
    val sourceTable = tableEnv.sqlQuery("SELECT * FROM CsvSourceTable limit 2")

    // 将查询到的数据转到下游存储
    sourceTable.executeInsert("CsvSinkTable")
  }
}

6)HiveCatalog

1、Maven配置

  • 基础配置
<!-- Flink Dependency -->
<dependency>
  <groupId>org.apache.flink</groupId>
  <artifactId>flink-connector-hive_2.11</artifactId>
  <version>1.14.3</version>
  <scope>provided</scope>
</dependency>

<dependency>
  <groupId>org.apache.flink</groupId>
  <artifactId>flink-table-api-java-bridge_2.11</artifactId>
  <version>1.14.3</version>
  <scope>provided</scope>
</dependency>

<!-- Hive Dependency -->
<dependency>
    <groupId>org.apache.hive</groupId>
    <artifactId>hive-exec</artifactId>
    <version>3.1.2</version>
    <scope>provided</scope>
</dependency>

【温馨提示】在IDEA中scope设置provided的时候,必须对应的运行文件设置加载provided的依赖到classpath

  • Log4j2 配置(log4j2.xml)
<?xml version="1.0" encoding="UTF-8"?>
<Configuration status="WARN">
    <Appenders>
        <Console name="Console" target="SYSTEM_OUT">
            <PatternLayout pattern="%d{YYYY-MM-dd HH:mm:ss} [%t] %-5p %c{1}:%L - %msg%n" />
        </Console>

        <RollingFile name="RollingFile" filename="log/test.log"
                     filepattern="${logPath}/%d{YYYYMMddHHmmss}-fargo.log">
            <PatternLayout pattern="%d{YYYY-MM-dd HH:mm:ss} [%t] %-5p %c{1}:%L - %msg%n" />
            <Policies>
                <SizeBasedTriggeringPolicy size="10 MB" />
            </Policies>
            <DefaultRolloverStrategy max="20" />
        </RollingFile>

    </Appenders>
    <Loggers>
        <Root level="info">
            <AppenderRef ref="Console" />
            <AppenderRef ref="RollingFile" />
        </Root>
    </Loggers>
</Configuration>

  • 配置hive-site.xml
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>

    <!-- 所连接的 MySQL 数据库的地址,hive_remote2是数据库,程序会自动创建,自定义就行 -->
    <property>
        <name>javax.jdo.option.ConnectionURL</name>
        <value>jdbc:mysql://localhost:3306/hive?createDatabaseIfNotExist=true&amp;useSSL=false&amp;serverTimezone=Asia/Shanghai</value>
    </property>

    <!-- MySQL 驱动 -->
    <property>
        <name>javax.jdo.option.ConnectionDriverName</name>
        <value>com.mysql.jdbc.Driver</value>
        <description>MySQL JDBC driver class</description>
    </property>

    <!-- mysql连接用户 -->
    <property>
        <name>javax.jdo.option.ConnectionUserName</name>
        <value>root</value>
        <description>user name for connecting to mysql server</description>
    </property>

    <!-- mysql连接密码 -->
    <property>
        <name>javax.jdo.option.ConnectionPassword</name>
        <value>123456</value>
        <description>password for connecting to mysql server</description>
    </property>

    <property>
        <name>hive.metastore.uris</name>
        <value>thrift://localhost:9083</value>
        <description>IP address (or fully-qualified domain name) and port of the metastore host</description>
    </property>

    <!-- host -->
    <property>
        <name>hive.server2.thrift.bind.host</name>
        <value>localhost</value>
        <description>Bind host on which to run the HiveServer2 Thrift service.</description>
    </property>

    <!-- hs2端口 默认是1000,为了区别,我这里不使用默认端口-->
    <property>
        <name>hive.server2.thrift.port</name>
        <value>10001</value>
    </property>

    <property>
        <name>hive.metastore.schema.verification</name>
        <value>true</value>
    </property>

</configuration>

【温馨提示】必须启动metastore和hiveserver2服务,不清楚的小伙拍可以参考我之前的文章:大数据Hadoop之——部署hadoop+hive环境(window10环境)

$ hive --service metastore
$ hive --service hiveserver2

2、Hadoop与Hive Guava冲突问题

【问题】Hadoop和hive-exec-3.1.2的Guava的版本冲突导致Flink任务启动异常
【解决】删掉%HIVE_HOME%\lib目录下的guava-19.0.jar,再把%HADOOP_HOME%\share\hadoop\common\lib\guava-27.0-jre.jar复制到%HIVE_HOME%\lib目录下。

3、示例演示

package com

import org.apache.flink.table.api.{EnvironmentSettings, TableEnvironment}
import org.apache.flink.table.catalog.hive.HiveCatalog

object HiveCatalogTest {
  def main(args: Array[String]): Unit = {
    val settings = EnvironmentSettings.inStreamingMode()
    val tableEnv = TableEnvironment.create(settings)
    val name            = "myhive"
    val defaultDatabase = "default"
    val hiveConfDir     = "flink/data/"
    val hive = new HiveCatalog(name, defaultDatabase, hiveConfDir)
    // 注册catalog,会话结束自动消失
    tableEnv.registerCatalog("myhive", hive)
    // 显示有多少个catalog
    tableEnv.executeSql("show catalogs").print()
    // 切换到myhive 的catalog
    tableEnv.useCatalog("myhive")
    // 创建库,已经持久化到hive了,会话结束依然存在
    tableEnv.executeSql("CREATE DATABASE IF NOT EXISTS mydatabase")
    // 显示有多少个database
    tableEnv.executeSql("show databases").print()
    // 切换数据库
    tableEnv.useDatabase("mydatabase")
    // 切换表
    tableEnv.executeSql("CREATE TABLE IF NOT EXISTS user_behavior (\n  user_id BIGINT,\n  item_id BIGINT,\n  category_id BIGINT,\n  behavior STRING,\n  ts TIMESTAMP(3)\n) WITH (\n 'connector' = 'kafka',\n 'topic' = 'user_behavior',\n 'properties.bootstrap.servers' = 'hadoop-node1:9092',\n 'properties.group.id' = 'testGroup',\n 'format' = 'json',\n 'json.fail-on-missing-field' = 'false',\n 'json.ignore-parse-errors' = 'true'\n)")
    tableEnv.executeSql("show tables").print()

  }
}

看下面通过hive客户端连接查看上面程序创建的库和表,依然是存在的

从上面验证显示,一切ok,记得开发的时候引入连接器的时候需要引入对应的maven配置

7)下载flink并本地启动集群(window)

下载地址:https://flink.apache.org/downloads.html

flink-1.14.3:https://dlcdn.apache.org/flink/flink-1.14.3/flink-1.14.3-bin-scala_2.12.tgz
【温馨提示】在新版中start-cluster.cmd和flink.cmd已经找不到了,但是可以从以前的版本中复制过来。下载下面的老版本
flink-1.9.1:https://archive.apache.org/dist/flink/flink-1.9.1/flink-1.9.1-bin-scala_2.11.tgz

其实主要从flink-1.9.1中copy以下两个文件到新版本中

下载比较慢,所以我这里还是提供一下这两个文件

  • flink.cmd
::###############################################################################
::  Licensed to the Apache Software Foundation (ASF) under one
::  or more contributor license agreements.  See the NOTICE file
::  distributed with this work for additional information
::  regarding copyright ownership.  The ASF licenses this file
::  to you under the Apache License, Version 2.0 (the
::  "License"); you may not use this file except in compliance
::  with the License.  You may obtain a copy of the License at
::
::      http://www.apache.org/licenses/LICENSE-2.0
::
::  Unless required by applicable law or agreed to in writing, software
::  distributed under the License is distributed on an "AS IS" BASIS,
::  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
::  See the License for the specific language governing permissions and
:: limitations under the License.
::###############################################################################

@echo off
setlocal

SET bin=%~dp0
SET FLINK_HOME=%bin%..
SET FLINK_LIB_DIR=%FLINK_HOME%\lib
SET FLINK_PLUGINS_DIR=%FLINK_HOME%\plugins

SET JVM_ARGS=-Xmx512m

SET FLINK_JM_CLASSPATH=%FLINK_LIB_DIR%\*

java %JVM_ARGS% -cp "%FLINK_JM_CLASSPATH%"; org.apache.flink.client.cli.CliFrontend %*

endlocal

  • start-cluster.bat
::###############################################################################
::  Licensed to the Apache Software Foundation (ASF) under one
::  or more contributor license agreements.  See the NOTICE file
::  distributed with this work for additional information
::  regarding copyright ownership.  The ASF licenses this file
::  to you under the Apache License, Version 2.0 (the
::  "License"); you may not use this file except in compliance
::  with the License.  You may obtain a copy of the License at
::
::      http://www.apache.org/licenses/LICENSE-2.0
::
::  Unless required by applicable law or agreed to in writing, software
::  distributed under the License is distributed on an "AS IS" BASIS,
::  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
::  See the License for the specific language governing permissions and
:: limitations under the License.
::###############################################################################

@echo off
setlocal EnableDelayedExpansion

SET bin=%~dp0
SET FLINK_HOME=%bin%..
SET FLINK_LIB_DIR=%FLINK_HOME%\lib
SET FLINK_PLUGINS_DIR=%FLINK_HOME%\plugins
SET FLINK_CONF_DIR=%FLINK_HOME%\conf
SET FLINK_LOG_DIR=%FLINK_HOME%\log

SET JVM_ARGS=-Xms1024m -Xmx1024m

SET FLINK_CLASSPATH=%FLINK_LIB_DIR%\*

SET logname_jm=flink-%username%-jobmanager.log
SET logname_tm=flink-%username%-taskmanager.log
SET log_jm=%FLINK_LOG_DIR%\%logname_jm%
SET log_tm=%FLINK_LOG_DIR%\%logname_tm%
SET outname_jm=flink-%username%-jobmanager.out
SET outname_tm=flink-%username%-taskmanager.out
SET out_jm=%FLINK_LOG_DIR%\%outname_jm%
SET out_tm=%FLINK_LOG_DIR%\%outname_tm%

SET log_setting_jm=-Dlog.file="%log_jm%" -Dlogback.configurationFile=file:"%FLINK_CONF_DIR%/logback.xml" -Dlog4j.configuration=file:"%FLINK_CONF_DIR%/log4j.properties"
SET log_setting_tm=-Dlog.file="%log_tm%" -Dlogback.configurationFile=file:"%FLINK_CONF_DIR%/logback.xml" -Dlog4j.configuration=file:"%FLINK_CONF_DIR%/log4j.properties"

:: Log rotation (quick and dirty)
CD "%FLINK_LOG_DIR%"
for /l %%x in (5, -1, 1) do ( 
SET /A y = %%x+1 
RENAME "%logname_jm%.%%x" "%logname_jm%.!y!" 2> nul
RENAME "%logname_tm%.%%x" "%logname_tm%.!y!" 2> nul
RENAME "%outname_jm%.%%x" "%outname_jm%.!y!"  2> nul
RENAME "%outname_tm%.%%x" "%outname_tm%.!y!"  2> nul
)
RENAME "%logname_jm%" "%logname_jm%.0"  2> nul
RENAME "%logname_tm%" "%logname_tm%.0"  2> nul
RENAME "%outname_jm%" "%outname_jm%.0"  2> nul
RENAME "%outname_tm%" "%outname_tm%.0"  2> nul
DEL "%logname_jm%.6"  2> nul
DEL "%logname_tm%.6"  2> nul
DEL "%outname_jm%.6"  2> nul
DEL "%outname_tm%.6"  2> nul

for %%X in (java.exe) do (set FOUND=%%~$PATH:X)
if not defined FOUND (
    echo java.exe was not found in PATH variable
    goto :eof
)

echo Starting a local cluster with one JobManager process and one TaskManager process.

echo You can terminate the processes via CTRL-C in the spawned shell windows.

echo Web interface by default on http://localhost:8081/.

start java %JVM_ARGS% %log_setting_jm% -cp "%FLINK_CLASSPATH%"; org.apache.flink.runtime.entrypoint.StandaloneSessionClusterEntrypoint --configDir "%FLINK_CONF_DIR%" > "%out_jm%" 2>&1
start java %JVM_ARGS% %log_setting_tm% -cp "%FLINK_CLASSPATH%"; org.apache.flink.runtime.taskexecutor.TaskManagerRunner --configDir "%FLINK_CONF_DIR%" > "%out_tm%" 2>&1

endlocal

启动flink集群很简单,只要双击start-cluster.bat

通过sql客户端验证一下

$ SELECT 'Hello World';

【错误】NoResourceAvailableException: Could not acquire the minimum required resources
【解决】是因为资源太小,不足以跑任务,扩大配置,修改如下配置:

jobmanager.memory.process.size: 3200m

taskmanager.memory.process.size: 2728m

taskmanager.memory.flink.size: 2280m

但是我这里调大了还是太小了,自己电脑配置有限,如果有小伙伴的配置高,可以再调大验证一下。

8)完成版配置

1、maven配置

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <parent>
        <artifactId>bigdata-test2023</artifactId>
        <groupId>com.bigdata.test2023</groupId>
        <version>1.0-SNAPSHOT</version>
    </parent>
    <modelVersion>4.0.0</modelVersion>

    <artifactId>flink</artifactId>

    <!-- DataStream API maven settings begin -->
    <dependencies>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-scala_2.12</artifactId>
            <version>1.14.3</version>
            <scope>provided</scope>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-scala_2.12</artifactId>
            <version>1.14.3</version>
            <scope>provided</scope>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients_2.12</artifactId>
            <version>1.14.3</version>
        </dependency>
        <!-- DataStream API maven settings end -->

        <!-- Table and SQL maven settings begin-->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-planner_2.12</artifactId>
            <version>1.14.3</version>
            <scope>provided</scope>
        </dependency>
        <!-- 上面已经设置过了 -->
        <!--<dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-scala_2.12</artifactId>
            <version>1.14.3</version>
            <scope>provided</scope>
        </dependency>-->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-common</artifactId>
            <version>1.14.3</version>
            <scope>provided</scope>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-csv</artifactId>
            <version>1.14.3</version>
        </dependency>
        <!-- Table and SQL maven settings end-->

        <!-- Hive Catalog maven settings begin -->
        <!-- Flink Dependency -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-hive_2.11</artifactId>
            <version>1.14.3</version>
            <scope>provided</scope>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-api-java-bridge_2.11</artifactId>
            <version>1.14.3</version>
            <scope>provided</scope>
        </dependency>

        <!-- Hive Dependency -->
        <dependency>
            <groupId>org.apache.hive</groupId>
            <artifactId>hive-exec</artifactId>
            <version>3.1.2</version>
            <scope>provided</scope>
        </dependency>

        <!-- Hive Catalog maven settings end -->


        <!--hadoop start-->
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-mapreduce-client-core</artifactId>
            <version>3.3.1</version>
            <scope>provided</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>3.3.1</version>
            <scope>provided</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-mapreduce-client-common</artifactId>
            <version>3.3.1</version>
            <scope>provided</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-mapreduce-client-jobclient</artifactId>
            <version>3.3.1</version>
            <scope>provided</scope>
        </dependency>
        <!--hadoop end-->

    </dependencies>

</project>

2、log4j2.xml配置

<?xml version="1.0" encoding="UTF-8"?>
<Configuration status="WARN">
    <Appenders>
        <Console name="Console" target="SYSTEM_OUT">
            <PatternLayout pattern="%d{YYYY-MM-dd HH:mm:ss} [%t] %-5p %c{1}:%L - %msg%n" />
        </Console>

        <RollingFile name="RollingFile" filename="log/test.log"
                     filepattern="${logPath}/%d{YYYYMMddHHmmss}-fargo.log">
            <PatternLayout pattern="%d{YYYY-MM-dd HH:mm:ss} [%t] %-5p %c{1}:%L - %msg%n" />
            <Policies>
                <SizeBasedTriggeringPolicy size="10 MB" />
            </Policies>
            <DefaultRolloverStrategy max="20" />
        </RollingFile>

    </Appenders>
    <Loggers>
        <Root level="info">
            <AppenderRef ref="Console" />
            <AppenderRef ref="RollingFile" />
        </Root>
    </Loggers>
</Configuration>

3、hive-site.xml配置

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>

    <!-- 所连接的 MySQL 数据库的地址,hive_remote2是数据库,程序会自动创建,自定义就行 -->
    <property>
        <name>javax.jdo.option.ConnectionURL</name>
        <value>jdbc:mysql://localhost:3306/hive?createDatabaseIfNotExist=true&amp;useSSL=false&amp;serverTimezone=Asia/Shanghai</value>
    </property>

    <!-- MySQL 驱动 -->
    <property>
        <name>javax.jdo.option.ConnectionDriverName</name>
        <value>com.mysql.jdbc.Driver</value>
        <description>MySQL JDBC driver class</description>
    </property>

    <!-- mysql连接用户 -->
    <property>
        <name>javax.jdo.option.ConnectionUserName</name>
        <value>root</value>
        <description>user name for connecting to mysql server</description>
    </property>

    <!-- mysql连接密码 -->
    <property>
        <name>javax.jdo.option.ConnectionPassword</name>
        <value>123456</value>
        <description>password for connecting to mysql server</description>
    </property>

    <property>
        <name>hive.metastore.uris</name>
        <value>thrift://localhost:9083</value>
        <description>IP address (or fully-qualified domain name) and port of the metastore host</description>
    </property>

    <!-- host -->
    <property>
        <name>hive.server2.thrift.bind.host</name>
        <value>localhost</value>
        <description>Bind host on which to run the HiveServer2 Thrift service.</description>
    </property>

    <!-- hs2端口 默认是1000,为了区别,我这里不使用默认端口-->
    <property>
        <name>hive.server2.thrift.port</name>
        <value>10001</value>
    </property>

    <property>
        <name>hive.metastore.schema.verification</name>
        <value>true</value>
    </property>

</configuration>

六、配置IDEA环境(java)

1)maven配置

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <parent>
        <artifactId>bigdata-test2023</artifactId>
        <groupId>com.bigdata.test2023</groupId>
        <version>1.0-SNAPSHOT</version>
    </parent>
    <modelVersion>4.0.0</modelVersion>

    <artifactId>flink</artifactId>

    <!-- DataStream API maven settings begin -->
    <dependencies>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>1.14.3</version>
            <scope>provided</scope>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java_2.12</artifactId>
            <version>1.14.3</version>
            <scope>provided</scope>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients_2.12</artifactId>
            <version>1.14.3</version>
        </dependency>
        <!-- DataStream API maven settings end -->

        <!-- Table and SQL maven settings begin-->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-planner_2.12</artifactId>
            <version>1.14.3</version>
            <scope>provided</scope>
        </dependency>
        <!-- 上面已经设置过了 -->
        <!--<dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java_2.12</artifactId>
            <version>1.14.3</version>
            <scope>provided</scope>
        </dependency>-->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-common</artifactId>
            <version>1.14.3</version>
            <scope>provided</scope>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-csv</artifactId>
            <version>1.14.3</version>
        </dependency>
        <!-- Table and SQL maven settings end-->

        <!-- Hive Catalog maven settings begin -->
        <!-- Flink Dependency -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-hive_2.11</artifactId>
            <version>1.14.3</version>
            <scope>provided</scope>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-api-java-bridge_2.11</artifactId>
            <version>1.14.3</version>
            <scope>provided</scope>
        </dependency>

        <!-- Hive Dependency -->
        <dependency>
            <groupId>org.apache.hive</groupId>
            <artifactId>hive-exec</artifactId>
            <version>3.1.2</version>
            <scope>provided</scope>
        </dependency>

        <!-- Hive Catalog maven settings end -->


        <!--hadoop start-->
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-mapreduce-client-core</artifactId>
            <version>3.3.1</version>
            <scope>provided</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>3.3.1</version>
            <scope>provided</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-mapreduce-client-common</artifactId>
            <version>3.3.1</version>
            <scope>provided</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-mapreduce-client-jobclient</artifactId>
            <version>3.3.1</version>
            <scope>provided</scope>
        </dependency>
        <!--hadoop end-->

    </dependencies>

</project>

【温馨提示】其实log4j2.xmlhive-site.xml不区分java和scala的,为了方便这里还是再复制一份。

2)log4j2.xml配置

<?xml version="1.0" encoding="UTF-8"?>
<Configuration status="WARN">
    <Appenders>
        <Console name="Console" target="SYSTEM_OUT">
            <PatternLayout pattern="%d{YYYY-MM-dd HH:mm:ss} [%t] %-5p %c{1}:%L - %msg%n" />
        </Console>

        <RollingFile name="RollingFile" filename="log/test.log"
                     filepattern="${logPath}/%d{YYYYMMddHHmmss}-fargo.log">
            <PatternLayout pattern="%d{YYYY-MM-dd HH:mm:ss} [%t] %-5p %c{1}:%L - %msg%n" />
            <Policies>
                <SizeBasedTriggeringPolicy size="10 MB" />
            </Policies>
            <DefaultRolloverStrategy max="20" />
        </RollingFile>

    </Appenders>
    <Loggers>
        <Root level="info">
            <AppenderRef ref="Console" />
            <AppenderRef ref="RollingFile" />
        </Root>
    </Loggers>
</Configuration>

3)hive-site.xml配置

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>

    <!-- 所连接的 MySQL 数据库的地址,hive_remote2是数据库,程序会自动创建,自定义就行 -->
    <property>
        <name>javax.jdo.option.ConnectionURL</name>
        <value>jdbc:mysql://localhost:3306/hive?createDatabaseIfNotExist=true&amp;useSSL=false&amp;serverTimezone=Asia/Shanghai</value>
    </property>

    <!-- MySQL 驱动 -->
    <property>
        <name>javax.jdo.option.ConnectionDriverName</name>
        <value>com.mysql.jdbc.Driver</value>
        <description>MySQL JDBC driver class</description>
    </property>

    <!-- mysql连接用户 -->
    <property>
        <name>javax.jdo.option.ConnectionUserName</name>
        <value>root</value>
        <description>user name for connecting to mysql server</description>
    </property>

    <!-- mysql连接密码 -->
    <property>
        <name>javax.jdo.option.ConnectionPassword</name>
        <value>123456</value>
        <description>password for connecting to mysql server</description>
    </property>

    <property>
        <name>hive.metastore.uris</name>
        <value>thrift://localhost:9083</value>
        <description>IP address (or fully-qualified domain name) and port of the metastore host</description>
    </property>

    <!-- host -->
    <property>
        <name>hive.server2.thrift.bind.host</name>
        <value>localhost</value>
        <description>Bind host on which to run the HiveServer2 Thrift service.</description>
    </property>

    <!-- hs2端口 默认是1000,为了区别,我这里不使用默认端口-->
    <property>
        <name>hive.server2.thrift.port</name>
        <value>10001</value>
    </property>

    <property>
        <name>hive.metastore.schema.verification</name>
        <value>true</value>
    </property>

</configuration>

关于更多大数据的内容,请耐心等待~

posted @ 2022-05-08 17:23  大数据老司机  阅读(3455)  评论(0编辑  收藏  举报