linux内核I2C子系统学习(一)

这部分准备分几个部分进行分析总结

因为I2C的通信肯定至少要有2个芯片完成,所以它的驱动是由2大部分组成:
  1. 主芯片的i2c的驱动
  2. 从芯片的i2c的驱动
    注:万一选的都不支持咋办???(惨了,只能2个芯片的驱动都得实现了,不过过程差不多)
 
(一).主芯片的I2C的驱动:(具体如何实现在后面在具体讲解)
 
首先要查看linux内核是否支持主芯片中i2c驱动器,如果支持就配置一下就ok了,否则要编写主控芯片的i2c驱动器

编写方法:

第一.要有i2c总线驱动(首先要查查内核i2c文件是否支持这种总线驱动,一般都有支持,如果没有只好自己倒霉自己写了)
第二.i2c设备驱动(主控芯片的地址等等信息)
这个过程都是差不多的,以后在分析。
一般的主控芯片的i2c控制器linux内核基本上支持的很好,如:2410的i2c驱动器的支持
 
(二).从芯片的I2C的驱动:
下面主要分析从芯片的I2C驱动(也有2种方式,第一个是利用内核提供的i2c-dev.c来构建,另一个是自己写)
主要分析第一种方式:
利用系统给我们提供的i2c-dev.c来实现一个i2c适配器的设备文件。然后通过在应用层操作i2c适配器来控制i2c设备。
i2c-dev.c并没有针对特定的设备而设计,只是提供了通用的read()、write()和ioctl()等接口,应用层可以借用这些接口访问挂接在适配器上的i2c设备的存储空间或寄存器,并控制I2C设备的工作方式。但是read和write方法适用性有限。
所以用ioctl方法来操作:

一般都不会使用i2c-dev.c的read()、write()方法。最常用的是ioctl()方法。ioctl()方法可以实现上面所有的情况(两种数据格式、以及I2C算法和smbus算法)。

 针对i2c的算法,需要熟悉struct i2c_rdwr_ioctl_data 、struct i2c_msg。使用的命令是I2C_RDWR。

        struct i2c_rdwr_ioctl_data 

    {

             struct i2c_msg __user *msgs; /* pointers to i2c_msgs */

              __u32 nmsgs; /* number of i2c_msgs */
          };
        struct i2c_msg {
            _ _u16 addr; /* slave address */
            _ _u16 flags; /* 标志(读、写) */ 
            _ _u16 len; /* msg length */
            _ _u8 *buf; /* pointer to msg data */
        };

针对smbus算法,需要熟悉struct i2c_smbus_ioctl_data。使用的命令是I2C_SMBUS。对于smbus算法,不需要考虑“多开始信号时序”问题。
        struct i2c_smbus_ioctl_data {
            __u8 read_write; //读、写
            __u8 command; //命令
            __u32 size; //数据长度标识
            union i2c_smbus_data __user *data; //数据
        };

首先在内核中已经包含了对s3c2410 中的i2c控制器(总线驱动)驱动的支持。提供了i2c算法(非smbus类型的,所以后面的ioctl的命令是I2C_RDWR)
        static const struct i2c_algorithm s3c24xx_i2c_algorithm = {
            .master_xfer = s3c24xx_i2c_xfer,
            .functionality = s3c24xx_i2c_func,
        };

 

另外一方面需要确定为了实现对AT24C02 e2prom的操作,需要确定从机芯片的地址及读写访问时序。

在网上找了个例子:

具体分析如下:

        #include <stdio.h>
        #include <linux/types.h>
        #include <stdlib.h>
        #include <fcntl.h>
        #include <unistd.h>
        #include <sys/types.h>
        #include <sys/ioctl.h>
        #include <errno.h>
        #define I2C_RETRIES 0x0701
        #define I2C_TIMEOUT 0x0702
        #define I2C_RDWR 0x0707 
        /*********定义struct i2c_rdwr_ioctl_data和struct i2c_msg,要和内核一致。两个重要的结构体*******/

  struct i2c_msg
        {
                unsigned short addr;
                unsigned short flags;
                unsigned short len;
                unsigned char *buf;
        };

struct i2c_rdwr_ioctl_data
        {
                struct i2c_msg *msgs;
                int nmsgs; 
        /* nmsgs这个数量决定了有多少开始信号,对于“单开始时序”,取1*/
        };


        int main()
        {
                int fd,ret;
                struct i2c_rdwr_ioctl_data e2prom_data;
                fd=open("/dev/i2c-0",O_RDWR);        
/*

为什么是i2c-0呢???那就要到内核里看啦,等会再说   open底层调用了i2c_get_adapter(int id)函数,这个函数很重要,他可以识别占用了哪个i2c总线 使用地0个i2c控制器 /dev/i2c-0是在注册i2c-dev.c后产生的,代表一个可操作的适配器。如果不使用i2c-dev.c(这里说啦上面的为什么) 的方式,就没有,也不需要这个节,i2c_driver结构体中有attach_adapter方法:里面用device_create(i2c_dev_class, &adap->dev,MKDEV(I2C_MAJOR, adap->nr), NULL,"i2c-%d",adap->nr);I2C_MAJOR=89,即i2c-dev.c针对每个i2c适配器生成一个主设备号位89的设备文件,次设备要自己定义 */ if(fd<0) { perror("open error"); } e2prom_data.nmsgs=2; /* *因为操作时序中,最多是用到2个开始信号(字节读操作中),所以此将 *e2prom_data.nmsgs配置为2 */ e2prom_data.msgs=(struct i2c_msg*)malloc(e2prom_data.nmsgs*sizeof(struct i2c_msg)); if(!e2prom_data.msgs) { perror("malloc error"); exit(1); } ioctl(fd,I2C_TIMEOUT,1);/*超时时间*/ ioctl(fd,I2C_RETRIES,2);/*重复次数*/ /***write data to e2prom**/ /**/ e2prom_data.nmsgs=1; (e2prom_data.msgs[0]).len=2; //1个 e2prom 写入目标的地址和1个数据 (e2prom_data.msgs[0]).addr=0x50;//e2prom 设备地址 (e2prom_data.msgs[0]).flags=0; //write (e2prom_data.msgs[0]).buf=(unsigned char*)malloc(2); (e2prom_data.msgs[0]).buf[0]=0x10;// e2prom 写入目标的地址 (e2prom_data.msgs[0]).buf[1]=0x58;//the data to write ret=ioctl(fd,I2C_RDWR,(unsigned long)&e2prom_data); if(ret<0) { perror("ioctl error1"); } sleep(1); /******read data from e2prom*******/ e2prom_data.nmsgs=2; (e2prom_data.msgs[0]).len=1; //e2prom 目标数据的地址 (e2prom_data.msgs[0]).addr=0x50; // e2prom 设备地址 (e2prom_data.msgs[0]).flags=0;//write (e2prom_data.msgs[0]).buf[0]=0x10;//e2prom数据地址 (e2prom_data.msgs[1]).len=1;//读出的数据 (e2prom_data.msgs[1]).addr=0x50;// e2prom 设备地址 (e2prom_data.msgs[1]).flags=I2C_M_RD;//read (e2prom_data.msgs[1]).buf=(unsigned char*)malloc(1);//存放返回值的地址。 (e2prom_data.msgs[1]).buf[0]=0;//初始化读缓冲         ret=ioctl(fd,I2C_RDWR,(unsigned long)&e2prom_data); if(ret<0) { perror("ioctl error2"); } printf("buff[0]=%x/n",(e2prom_data.msgs[1]).buf[0]); close(fd);      i2c_put_adapter(client->adapter);释放i2c总线      return 0; }

  以上讲述了一种比较常用的利用i2c-dev.c操作i2c设备的方法,这种方法可以说是在应用层完成了对具体i2c设备的驱动工作。

  接下来准备具体分析如何写第一部分!

 
posted on 2012-12-04 19:41  孟浩依然  阅读(8635)  评论(0编辑  收藏  举报