线性移位寄存器(LFSR)

线性移位寄存器(LFSR)

定义

  • 一个n级寄存器是一个由n个存储单元b1,b2,……,bn和一个计算单元f(b1,b2,……,bn)构成的装置,
    bn+1=f(b1,b2,……,bn)

若f为线性函数
f(b1,b2,……,bn)=t1b1+t1b2+……+tn*bn
称为线性反馈寄存器,即为LFSR

其中ti=0,1,ti的作用相当于一个开关,用断开和闭合来表示0和1.

例n=3,f(b1,b2,b3)=b1+b3,则输入101,
则输出为:101001110100111010011……
周期T=7=2^3-1

LFSR周期

  • 寄存器上始终存储着n个元素,该n个元素称为一个状态,初始时刻的状态为:
  • S1=(b1,b2,……,bn)
    第i时刻的状态为:
    Si=(bi,bi+1,……,bi+n-1)
    在n级条件下,最多有2n个状态,而在线性运算下,全0不会转入其他状态,故LFSR序列的最长周期为:2n-1

m序列

定义:

  • 当n级LFSR序列{bi}的周期T=2^n-1时,称{bi}为n级m序列。
    注:如何选择合适的反馈函数LFSR使得序列周期达到最大(m序列),是研究重点。

m序列的产生

  • 特征多项式
    • 若LFSR序列{bi}满足bn+1=t1b1+t2b2+……—+tnbn,令p(x)=1-t1x+t2x2+……+tnxn (t0=1)称p(x)为LFSR的特征多项式

Th

  • LFSR序列{bi}为n级m序列的充要条件是其特征多项式p(x)是本原多项式。
    注1:本原多项式概念略。
    注2:n次本原多项式的个数:

Matlab中调用本原多项式的命令:

primpoly(n,'all')

常用本原多项式

x^2+x+1
x^3+x+1
x^4+x+1
x^5+x^2+1
x^6+x+1
x^7+x^3+1
x^8+x^4+x^3+x^2+1
x^9+x^4+1
x^10+x^3+1
x^11+x^2+1
posted @ 2020-03-11 11:45  insist钢  阅读(8794)  评论(0编辑  收藏  举报