时间复杂度分析

时间复杂度分析

大O表示法

  • O(1): Constant Complexity 常数复杂度
 int n = 1000;
 System.out.println("Hey - your input is: " + n);
 int n = 1000;
 System.out.println("Hey - your input is: " + n); 
 System.out.println("Hmm.. I'm doing more stuff with: " + n);
 System.out.println("And more: " + n);
  • O(log n): Logarithmic Complexity 对数复杂度
for (int i = 1; i < n; i = i * 2) 
{     
    System.out.println("Hey - I'm busy looking at: " + i); 
}
  • O(n): Linear Complexity 线性时间复杂度
for (int i = 1; i <= n; i++)
{
    System.out.println("Hey - I'm busy looking at: " + i); 
}
  • O(n^2): N square Complexity 平方
for (int i = 1; i <= n; i++) 
{
    for (int j = 1; j <=n; j++) 
    {         
        System.out.println("Hey - I'm busy looking at: " + i + " and " + j);     
    } 
}
  • O(2^n): Exponential Growth 指数
int fib(int n) 
{
    if (n <= 2) 
    return n;     
    return fib(n - 1) + fib(n - 2); 
}
  • O(n!): Factorial 阶乘

注意:只看最高复杂度的运算

posted @ 2020-02-26 23:22  insist钢  阅读(159)  评论(0编辑  收藏  举报