java阻塞队列

LinkedTransferQueue:    (无界阻塞队列)继承自TransferQueue接口,又再继承自BlockingQueue。
BlockingQueue:   当生产者向队列添加元素但队列已满时,生产者会被阻塞;  当消费者从队列移除元素但队列为空时,消费者会被阻塞。
TransferQueue:    

1. 什么是阻塞队列?

阻塞队列(BlockingQueue)是一个支持两个附加操作的队列。这两个附加的操作是:在队列为空时,获取元素的线程会等待队列变为非空。当队列满时,存储元素的线程会等待队列可用。阻塞队列常用于生产者和消费者的场景,生产者是往队列里添加元素的线程,消费者是从队列里拿元素的线程。阻塞队列就是生产者存放元素的容器,而消费者也只从容器里拿元素。

2. Java里的阻塞队列

JDK7提供了7个阻塞队列。分别是

  • ArrayBlockingQueue :一个由数组结构组成的有界阻塞队列。
  • LinkedBlockingQueue :一个由链表结构组成的有界阻塞队列。
  • PriorityBlockingQueue :一个支持优先级排序的无界阻塞队列。
  • DelayQueue:一个使用优先级队列实现的无界阻塞队列。
  • SynchronousQueue:一个不存储元素的阻塞队列。
  • LinkedTransferQueue:一个由链表结构组成的无界阻塞队列。
  • LinkedBlockingDeque:一个由链表结构组成的双向阻塞队列。
  • ArrayBlockingQueue

    ArrayBlockingQueue是一个用数组实现的有界阻塞队列。此队列按照先进先出(FIFO)的原则对元素进行排序。默认情况下不保证访问者公平的访问队列,所谓公平访问队列是指阻塞的所有生产者线程或消费者线程,当队列可用时,可以按照阻塞的先后顺序访问队列,即先阻塞的生产者线程,可以先往队列里插入元素,先阻塞的消费者线程,可以先从队列里获取元素。通常情况下为了保证公平性会降低吞吐量。我们可以使用以下代码创建一个公平的阻塞队列:

    1 ArrayBlockingQueue fairQueue = new  ArrayBlockingQueue(1000,true);

    访问者的公平性是使用可重入锁实现的,代码如下:

    1 public ArrayBlockingQueue(int capacity, boolean fair) {
    2         if (capacity <= 0)
    3             throw new IllegalArgumentException();
    4         this.items = new Object[capacity];
    5         lock = new ReentrantLock(fair);
    6         notEmpty = lock.newCondition();
    7         notFull =  lock.newCondition();
    8 }

    LinkedBlockingQueue

    LinkedBlockingQueue是一个用链表实现的有界阻塞队列。此队列的默认和最大长度为Integer.MAX_VALUE。此队列按照先进先出的原则对元素进行排序。

    PriorityBlockingQueue

    PriorityBlockingQueue是一个支持优先级的无界队列。默认情况下元素采取自然顺序排列,也可以通过比较器comparator来指定元素的排序规则。元素按照升序排列。

    DelayQueue

    DelayQueue是一个支持延时获取元素的无界阻塞队列。队列使用PriorityQueue来实现。队列中的元素必须实现Delayed接口,在创建元素时可以指定多久才能从队列中获取当前元素。只有在延迟期满时才能从队列中提取元素。我们可以将DelayQueue运用在以下应用场景:

    • 缓存系统的设计:可以用DelayQueue保存缓存元素的有效期,使用一个线程循环查询DelayQueue,一旦能从DelayQueue中获取元素时,表示缓存有效期到了。
    • 定时任务调度。使用DelayQueue保存当天将会执行的任务和执行时间,一旦从DelayQueue中获取到任务就开始执行,从比如TimerQueue就是使用DelayQueue实现的。

    队列中的Delayed必须实现compareTo来指定元素的顺序。比如让延时时间最长的放在队列的末尾。实现代码如下:

    01 public int compareTo(Delayed other) {
    02            if (other == this// compare zero ONLY if same object
    03                 return 0;
    04             if (other instanceof ScheduledFutureTask) {
    05                 ScheduledFutureTask x = (ScheduledFutureTask)other;
    06                 long diff = time - x.time;
    07                 if (diff < 0)
    08                     return -1;
    09                 else if (diff > 0)
    10                     return 1;
    11        else if (sequenceNumber < x.sequenceNumber)
    12                     return -1;
    13                 else
    14                     return 1;
    15             }
    16             long d = (getDelay(TimeUnit.NANOSECONDS) -
    17                       other.getDelay(TimeUnit.NANOSECONDS));
    18             return (d == 0) ? 0 : ((d < 0) ? -1 1);
    19         }

    如何实现Delayed接口

    我们可以参考ScheduledThreadPoolExecutor里ScheduledFutureTask类。这个类实现了Delayed接口。首先:在对象创建的时候,使用time记录前对象什么时候可以使用,代码如下:

    1 ScheduledFutureTask(Runnable r, V result, long ns, long period) {
    2             super(r, result);
    3             this.time = ns;
    4             this.period = period;
    5             this.sequenceNumber = sequencer.getAndIncrement();
    6 }

    然后使用getDelay可以查询当前元素还需要延时多久,代码如下:

    public long getDelay(TimeUnit unit) {
                return unit.convert(time - now(), TimeUnit.NANOSECONDS);
            }

    通过构造函数可以看出延迟时间参数ns的单位是纳秒,自己设计的时候最好使用纳秒,因为getDelay时可以指定任意单位,一旦以纳秒作为单位,而延时的时间又精确不到纳秒就麻烦了。使用时请注意当time小于当前时间时,getDelay会返回负数。

    如何实现延时队列

    延时队列的实现很简单,当消费者从队列里获取元素时,如果元素没有达到延时时间,就阻塞当前线程。

    1 long delay = first.getDelay(TimeUnit.NANOSECONDS);
    2                     if (delay <= 0)
    3                         return q.poll();
    4                     else if (leader != null)
    5                         available.await();

    SynchronousQueue

    SynchronousQueue是一个不存储元素的阻塞队列。每一个put操作必须等待一个take操作,否则不能继续添加元素。SynchronousQueue可以看成是一个传球手,负责把生产者线程处理的数据直接传递给消费者线程。队列本身并不存储任何元素,非常适合于传递性场景,比如在一个线程中使用的数据,传递给另外一个线程使用,SynchronousQueue的吞吐量高于LinkedBlockingQueue 和 ArrayBlockingQueue。

    LinkedTransferQueue

    LinkedTransferQueue是一个由链表结构组成的无界阻塞TransferQueue队列。相对于其他阻塞队列LinkedTransferQueue多了tryTransfer和transfer方法。

    transfer方法。如果当前有消费者正在等待接收元素(消费者使用take()方法或带时间限制的poll()方法时),transfer方法可以把生产者传入的元素立刻transfer(传输)给消费者。如果没有消费者在等待接收元素,transfer方法会将元素存放在队列的tail节点,并等到该元素被消费者消费了才返回。transfer方法的关键代码如下:

    1 Node pred = tryAppend(s, haveData);
    2 return awaitMatch(s, pred, e, (how == TIMED), nanos);

    第一行代码是试图把存放当前元素的s节点作为tail节点。第二行代码是让CPU自旋等待消费者消费元素。因为自旋会消耗CPU,所以自旋一定的次数后使用Thread.yield()方法来暂停当前正在执行的线程,并执行其他线程。

    tryTransfer方法。则是用来试探下生产者传入的元素是否能直接传给消费者。如果没有消费者等待接收元素,则返回false。和transfer方法的区别是tryTransfer方法无论消费者是否接收,方法立即返回。而transfer方法是必须等到消费者消费了才返回。

    对于带有时间限制的tryTransfer(E e, long timeout, TimeUnit unit)方法,则是试图把生产者传入的元素直接传给消费者,但是如果没有消费者消费该元素则等待指定的时间再返回,如果超时还没消费元素,则返回false,如果在超时时间内消费了元素,则返回true。

    LinkedBlockingDeque

    LinkedBlockingDeque是一个由链表结构组成的双向阻塞队列。所谓双向队列指的你可以从队列的两端插入和移出元素。双端队列因为多了一个操作队列的入口,在多线程同时入队时,也就减少了一半的竞争。相比其他的阻塞队列,LinkedBlockingDeque多了addFirst,addLast,offerFirst,offerLast,peekFirst,peekLast等方法,以First单词结尾的方法,表示插入,获取(peek)或移除双端队列的第一个元素。以Last单词结尾的方法,表示插入,获取或移除双端队列的最后一个元素。另外插入方法add等同于addLast,移除方法remove等效于removeFirst。但是take方法却等同于takeFirst,不知道是不是Jdk的bug,使用时还是用带有First和Last后缀的方法更清楚。在初始化LinkedBlockingDeque时可以初始化队列的容量,用来防止其再扩容时过渡膨胀。另外双向阻塞队列可以运用在“工作窃取”模式中

  • 3. 阻塞队列的实现原理

  • 如果队列是空的,消费者会一直等待,当生产者添加元素时候,消费者是如何知道当前队列有元素的呢?如果让你来设计阻塞队列你会如何设计,让生产者和消费者能够高效率的进行通讯呢?让我们先来看看JDK是如何实现的。???
posted @ 2018-02-26 22:30  刘大飞  阅读(206)  评论(0编辑  收藏  举报