一、HBase的读写流程
画出架构
1.1 HBase读流程
Hbase读取数据的流程:
1)是由客户端发起读取数据的请求,首先会与zookeeper建立连接
2)从zookeeper中获取一个hbase:meta表位置信息,被哪一个regionserver所管理着
hbase:meta表:hbase的元数据表,在这个表中存储了自定义表相关的元数据,包括表名,表有哪些列簇,表有哪些reguion,每个region存储的位置,每个region被哪个regionserver所管理,这个表也是存储在某一个region上的,并且这个meta表只会被一个regionserver所管理。这个表的位置信息只有zookeeper知道。
3)连接这个meta表对应的regionserver,从meta表中获取当前你要读取的这个表对应的regionsever是谁。
当一个表多个region怎么办呢?
如果我们获取数据是以get的方式,只会返回一个regionserver
如果我们获取数据是以scan的方式,会将所有的region对应的regionserver的地址全部返回。
4)连接要读取表的对应的regionserver,从regionserver上的开始读取数据:
读取顺序:memstore-->blockcache-->storefile-->Hfile中
注意:如果是scan操作,就不仅仅去blockcache了,而是所有都会去找。
1.2 HBase写流程
--------------------------1-4步是客户端写入数据的流程-----------------
Hbase的写入数据流程:
1)由客户端发起写数据请求,首先会与zookeeper建立连接
2)从zookeeper中获取hbase:meta表被哪一个regionserver所管理
3)连接hbase:meta表中获取对应的regionserver地址 (从meta表中获取当前要写入数据的表对应的region所管理的regionserver) 只会返回一个regionserver地址
4)与要写入数据的regionserver建立连接,然后开始写入数据,将数据首先会写入到HLog,然后将数据写入到对应store模块中的memstore中
(可能会写多个),当这两个地方都写入完成之后,表示数据写入完成。
-------------------------后面的步骤是服务器内部的操作-----------------
异步操作
5)随着客户端不断地写入数据,memstore中的数据会越来多,当内存中的数据达到阈值(128M/1h)的时候,放入到blockchache中,生成新的memstore接收用户过来的数据,然后当blockcache的大小达到一定阈值(0.85)的时候,开始触发flush机制,将数据最终刷新到HDFS中形成小的Hfile文件。
6)随着不断地刷新,storefile不断地在HDFS上生成小HFIle文件,当小的HFile文件达到阈值的时候(3个及3个以上),就会触发Compaction机制,将小的HFile合并成一个大的HFile.
7)随着不断地合并,大的HFile文件会越来越大,当达到一定阈值(最终10G)的时候,会触发分裂机制(split),将大的HFile文件进行一分为二,同时管理这个大的HFile的region也会被一分为二,形成两个新的region和两个新的HFile文件,一对一的进行管理,将原来旧的region和分裂之前大的HFile文件慢慢地就会下线处理。
二、Region的分裂策略
region中存储的是一张表的数据,当region中的数据条数过多的时候,会直接影响查询效率。当region过大的时候,region会被拆分为两个region,HMaster会将分裂的region分配到不同的regionserver上,这样可以让请求分散到不同的RegionServer上,已达到负载均衡 , 这也是HBase的一个优点 。
-
ConstantSizeRegionSplitPolicy
0.94版本前,HBase region的默认切分策略
当region中最大的store大小超过某个阈值(hbase.hregion.max.filesize=10G)之后就会触发切分,一个region等分为2个region。
但是在生产线上这种切分策略却有相当大的弊端(切分策略对于大表和小表没有明显的区分):
-
阈值(hbase.hregion.max.filesize)设置较大对大表比较友好,但是小表就有可能不会触发分裂,极端情况下可能就1个,形成热点,这对业务来说并不是什么好事。
-
如果设置较小则对小表友好,但一个大表就会在整个集群产生大量的region,这对于集群的管理、资源使用、failover来说都不是一件好事。
-
-
IncreasingToUpperBoundRegionSplitPolicy
0.94版本~2.0版本默认切分策略
总体看和ConstantSizeRegionSplitPolicy思路相同,一个region中最大的store大小大于设置阈值就会触发切分。 但是这个阈值并不像ConstantSizeRegionSplitPolicy是一个固定的值,而是会在一定条件下不断调整,调整规则和region所属表在当前regionserver上的region个数有关系.
region split阈值的计算公式是:
-
设regioncount:是region所属表在当前regionserver上的region的个数
-
阈值 = regioncount^3 * 128M * 2,当然阈值并不会无限增长,最大不超过MaxRegionFileSize(10G),当region中最大的store的大小达到该阈值的时候进行region split
例如:
-
第一次split阈值 = 1^3 * 256 = 256MB
-
第二次split阈值 = 2^3 * 256 = 2048MB
-
第三次split阈值 = 3^3 * 256 = 6912MB
-
第四次split阈值 = 4^3 * 256 = 16384MB > 10GB,因此取较小的值10GB
-
后面每次split的size都是10GB了
特点
-
相比ConstantSizeRegionSplitPolicy,可以自适应大表、小表;
-
在集群规模比较大的情况下,对大表的表现比较优秀
-
对小表不友好,小表可能产生大量的小region,分散在各regionserver上
-
小表达不到多次切分条件,导致每个split都很小,所以分散在各个regionServer上
-
-
SteppingSplitPolicy
2.0版本默认切分策略
相比 IncreasingToUpperBoundRegionSplitPolicy 简单了一些 region切分的阈值依然和待分裂region所属表在当前regionserver上的region个数有关系
-
如果region个数等于1,切分阈值为flush size 128M * 2
-
否则为MaxRegionFileSize。
这种切分策略对于大集群中的大表、小表会比 IncreasingToUpperBoundRegionSplitPolicy 更加友好,小表不会再产生大量的小region,而是适可而止。
-
-
KeyPrefixRegionSplitPolicy
根据rowKey的前缀对数据进行分区,这里是指定rowKey的前多少位作为前缀,比如rowKey都是16位的,指定前5位是前缀,那么前5位相同的rowKey在相同的region中。
-
DelimitedKeyPrefixRegionSplitPolicy
保证相同前缀的数据在同一个region中,例如rowKey的格式为:userid_eventtype_eventid,指定的delimiter为 _ ,则split的的时候会确保userid相同的数据在同一个region中。 按照分隔符进行切分,而KeyPrefixRegionSplitPolicy是按照指定位数切分。
-
BusyRegionSplitPolicy
按照一定的策略判断Region是不是Busy状态,如果是即进行切分
如果你的系统常常会出现热点Region,而你对性能有很高的追求,那么这种策略可能会比较适合你。它会通过拆分热点Region来缓解热点Region的压力,但是根据热点来拆分Region也会带来很多不确定性因素,因为你也不知道下一个被拆分的Region是哪个。
-
DisabledRegionSplitPolicy
不启用自动拆分, 需要指定手动拆分
三、Compaction操作
Minor Compaction:
-
指选取一些小的、相邻的StoreFile将他们合并成一个更大的StoreFile,在这个过程中不会处理已经Deleted或Expired的Cell。一次 Minor Compaction 的结果是更少并且更大的StoreFile。
Major Compaction:
-
指将所有的StoreFile合并成一个StoreFile,这个过程会清理三类没有意义的数据:被删除的数据、TTL过期数据、版本号超过设定版本号的数据。另外,一般情况下,major compaction时间会持续比较长,整个过程会消耗大量系统资源,对上层业务有比较大的影响。因此线上业务都会将关闭自动触发major compaction功能,改为手动在业务低峰期触发。
四、面对百亿数据,HBase为什么查询速度依然非常快?
HBase适合存储PB级别的海量数据(百亿千亿量级条记录),如果根据记录主键Rowkey来查询,能在几十到百毫秒内返回数据。
那么HBase是如何做到的呢?
接下来,简单阐述一下数据的查询思路和过程。
查询过程
第1步:
项目有100亿业务数据,存储在一个HBase集群上(由多个服务器数据节点构成),每个数据节点上有若干个Region(区域),每个Region实际上就是HBase中一批数据的集合(一段连续范围rowkey的数据)。
我们现在开始根据主键RowKey来查询对应的记录,通过meta表可以帮我们迅速定位到该记录所在的数据节点,以及数据节点中的Region,目前我们有100亿条记录,占空间10TB。所有记录被切分成5000个Region,那么现在,每个Region就是2G。
由于记录在1个Region中,所以现在我们只要查询这2G的记录文件,就能找到对应记录。
第2步:
由于HBase存储数据是按照列族存储的。比如一条记录有400个字段,前100个字段是人员信息相关,这是一个列簇(列的集合);中间100个字段是公司信息相关,是一个列簇。另外100个字段是人员交易信息相关,也是一个列簇;最后还有100个字段是其他信息,也是一个列簇
这四个列簇是分开存储的,这时,假设2G的Region文件中,分为4个列族,那么每个列族就是500M。
到这里,我们只需要遍历这500M的列簇就可以找到对应的记录。
第3步:
如果要查询的记录在其中1个列族上,1个列族在HDFS中会包含1个或者多个HFile。
如果一个HFile一般的大小为100M,那么该列族包含5个HFile在磁盘上或内存中。
由于HBase的内存进而磁盘中的数据是排好序的,要查询的记录有可能在最前面,也有可能在最后面,按平均来算,我们只需遍历2.5个HFile共250M,即可找到对应的记录。
第4步:
每个HFile中,是以键值对(key/value)方式存储,只要遍历文件中的key位置并判断符合条件即可
一般key是有限的长度,假设key/value比是1:24,最终只需要10M的数据量,就可获取的对应的记录。
如果数据在机械磁盘上,按其访问速度100M/S,只需0.1秒即可查到。
如果是SSD的话,0.01秒即可查到。
当然,扫描HFile时还可以通过布隆过滤器快速定位到对应的HFile,以及HBase是有内存缓存机制的,如果数据在内存中,效率会更高。
总结
正因为以上大致的查询思路,保证了HBase即使随着数据量的剧增,也不会导致查询性能的下降。
同时,HBase是一个面向列存储的数据库(列簇机制),当表字段非常多时,可以把其中一些字段独立出来放在一部分机器上,而另外一些字段放到另一部分机器上,分散存储,分散列查询。
正由于这样复杂的存储结构和分布式的存储方式,保证了HBase海量数据下的查询效率。
五、HBase与Hive的集成
HBase与Hive的对比
hive:
数据仓库:Hive的本质其实就相当于将HDFS中已经存储的文件在Mysql中做了一个双射关系,以方便使用HQL去管理查询。
用于数据分析、清洗:Hive适用于离线的数据分析和清洗,延迟较高。
基于HDFS、MapReduce:Hive存储的数据依旧在DataNode上,编写的HQL语句终将是转换为MapReduce代码执行。
HBase
数据库:是一种面向列族存储的非关系型数据库。
用于存储结构化和非结构化的数据:适用于单表非关系型数据的存储,不适合做关联查询,类似JOIN等操作。
基于HDFS:数据持久化存储的体现形式是HFile,存放于DataNode中,被ResionServer以region的形式进行管理。
延迟较低,接入在线业务使用:面对大量的企业数据,HBase可以直线单表大量数据的存储,同时提供了高效的数据访问速度。
在
hive-site.xml
中添加zookeeper的属性
<property>
<name>hive.zookeeper.quorum</name>
<value>hadoop102,hadoop103,hadoop104</value>
</property>
<property>
<name>hive.zookeeper.client.port</name>
<value>2181</value>
</property>
HBase中已经存储了某一张表,在Hive中创建一个外部表来关联HBase中的这张表
建立外部表的字段名要和hbase中的列名一致
前提是hbase中已经有表了
create external table students_hbase
(
id string,
name string,
age string,
gender string,
clazz string
)
stored by 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
with serdeproperties ("hbase.columns.mapping" = "
:key,
info:name,
info:age,
info:gender,
info:clazz
")
tblproperties("hbase.table.name" = "default:students");
create external table score_hbase2
(
id string,
score_dan string
)
stored by 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
with serdeproperties ("hbase.columns.mapping" = "
:key,
info:score_dan
")
tblproperties("hbase.table.name" = "default:score");
关联后就可以使用Hive函数进行一些分析操作了
六、Phoenix
Hbase适合存储大量的对关系运算要求低的NOSQL数据,受Hbase 设计上的限制不能直接使用原生的API执行在关系数据库中普遍使用的条件判断和聚合等操作。Hbase很优秀,一些团队寻求在Hbase之上提供一种更面向普通开发人员的操作方式,Apache Phoenix即是。
Phoenix 基于Hbase给面向业务的开发人员提供了以标准SQL的方式对Hbase进行查询操作,并支持标准SQL中大部分特性:条件运算,分组,分页,等高级查询语法。
1、Phoenix搭建
Phoenix 4.15 HBase 1.4.6 hadoop 2.7.6
1、关闭hbase集群,在master中执行
stop-hbase.sh
2、上传解压配置环境变量
解压
tar -xvf apache-phoenix-4.15.0-HBase-1.4-bin.tar.gz -C /usr/local/soft/
改名
mv apache-phoenix-4.15.0-HBase-1.4-bin phoenix-4.15.0
3、将phoenix-4.15.0-HBase-1.4-server.jar复制到所有节点的hbase lib目录下
scp /usr/local/soft/phoenix-4.15.0/phoenix-4.15.0-HBase-1.4-server.jar master:/usr/local/soft/hbase-1.4.6/lib/
scp /usr/local/soft/phoenix-4.15.0/phoenix-4.15.0-HBase-1.4-server.jar node1:/usr/local/soft/hbase-1.4.6/lib/
scp /usr/local/soft/phoenix-4.15.0/phoenix-4.15.0-HBase-1.4-server.jar node2:/usr/local/soft/hbase-1.4.6/lib/
4、启动hbase , 在master中执行
start-hbase.sh
5、配置环境变量
vim /etc/profile
2、Phoenix使用
1、连接sqlline
sqlline.py master,node1,node2 # 出现 163/163 (100%) Done Done sqlline version 1.5.0 0: jdbc:phoenix:master,node1,node2>
2、常用命令
# 1、创建表 CREATE TABLE IF NOT EXISTS student ( id VARCHAR NOT NULL PRIMARY KEY, name VARCHAR, age BIGINT, gender VARCHAR , clazz VARCHAR ); # 2、显示所有表 !table # 3、插入数据 upsert into STUDENT values('1500100004','葛德曜',24,'男','理科三班'); upsert into STUDENT values('1500100005','宣谷芹',24,'男','理科六班'); upsert into STUDENT values('1500100006','羿彦昌',24,'女','理科三班'); # 4、查询数据,支持大部分sql语法, select * from STUDENT ; select * from STUDENT where age=24; select gender ,count(*) from STUDENT group by gender; select * from student order by gender; # 5、删除数据 delete from STUDENT where id='1500100004'; # 6、删除表 drop table STUDENT; # 7、退出命令行 !quit 更多语法参照官网 https://phoenix.apache.org/language/index.html#upsert_select
3、phoenix表映射
默认情况下,直接在hbase中创建的表,通过phoenix是查看不到的
如果需要在phoenix中操作直接在hbase中创建的表,则需要在phoenix中进行表的映射。映射方式有两种:视图映射和表映射
3.1、视图映射
Phoenix创建的视图是只读的,所以只能用来做查询,无法通过视图对源数据进行修改等操作
# hbase shell 进入hbase命令行 hbase shell # 创建hbase表 create 'test','name','company' # 插入数据 put 'test','001','name:firstname','zhangsan1' put 'test','001','name:lastname','zhangsan2' put 'test','001','company:name','数加' put 'test','001','company:address','合肥' upsert into TEST values('002','xiaohu','xiaoxiao','数加','合肥'); # 在phoenix创建视图, primary key 对应到hbase中的rowkey create view "test"( empid varchar primary key, "name"."firstname" varchar, "name"."lastname" varchar, "company"."name" varchar, "company"."address" varchar ); CREATE view "students" ( id VARCHAR NOT NULL PRIMARY KEY, "info"."name" VARCHAR, "info"."age" VARCHAR, "info"."gender" VARCHAR , "info"."clazz" VARCHAR ) column_encoded_bytes=0; # 在phoenix查询数据,表名通过双引号引起来 select * from "test"; # 删除视图 drop view "test";
3.2、表映射
使用Apache Phoenix创建对HBase的表映射,有两类:
1) 当HBase中已经存在表时,可以以类似创建视图的方式创建关联表,只需要将create view改为create table即可。
2)当HBase中不存在表时,可以直接使用create table指令创建需要的表,并且在创建指令中可以根据需要对HBase表结构进行显示的说明。
第1)种情况下,如在之前的基础上已经存在了test表,则表映射的语句如下:
create table "test" ( empid varchar primary key, "name"."firstname" varchar, "name"."lastname"varchar, "company"."name" varchar, "company"."address" varchar )column_encoded_bytes=0; upsert into "students" values('150011000100','xiaohu','24','男','理科三班'); upsert into "test" values('1001','xiaohu','xiaoxiao','数加','合肥'); CREATE table "students" ( id VARCHAR NOT NULL PRIMARY KEY, "info"."name" VARCHAR, "info"."age" VARCHAR, "info"."gender" VARCHAR , "info"."clazz" VARCHAR ) column_encoded_bytes=0; upsert into "students" values('150011000100','xiaohu','24','男','理科三班'); CREATE table "score" ( id VARCHAR NOT NULL PRIMARY KEY, "info"."score_dan" VARCHAR ) column_encoded_bytes=0;
使用create table创建的关联表,如果对表进行了修改,源数据也会改变,同时如果关联表被删除,源表也会被删除。但是视图就不会,如果删除视图,源数据不会发生改变。
七、bulkLoad实现批量导入
优点:
-
如果我们一次性入库hbase巨量数据,处理速度慢不说,还特别占用Region资源, 一个比较高效便捷的方法就是使用 “Bulk Loading”方法,即HBase提供的HFileOutputFormat类。
-
它是利用hbase的数据信息按照特定格式存储在hdfs内这一原理,直接生成这种hdfs内存储的数据格式文件,然后上传至合适位置,即完成巨量数据快速入库的办法。配合mapreduce完成,高效便捷,而且不占用region资源,增添负载。
限制:
-
仅适合初次数据导入,即表内数据为空,或者每次入库表内都无数据的情况。
-
HBase集群与Hadoop集群为同一集群,即HBase所基于的HDFS为生成HFile的MR的集群
代码编写:
提前在Hbase中创建好表
生成Hfile基本流程:
设置Mapper的输出KV类型:
K: ImmutableBytesWritable(代表行键)
V: KeyValue (代表cell)
2. 开发Mapper
读取你的原始数据,按你的需求做处理
输出rowkey作为K,输出一些KeyValue(Put)作为V
3. 配置job参数
a. Zookeeper的连接地址
b. 配置输出的OutputFormat为HFileOutputFormat2,并为其设置参数
4. 提交job
导入HFile到RegionServer的流程
构建一个表描述对象
构建一个region定位工具
然后用LoadIncrementalHFiles来doBulkload操作
pom文件:
<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <parent> <artifactId>hadoop-bigdata17</artifactId> <groupId>com.shujia</groupId> <version>1.0-SNAPSHOT</version> </parent> <modelVersion>4.0.0</modelVersion> <artifactId>had-hbase-demo</artifactId> <properties> <maven.compiler.source>8</maven.compiler.source> <maven.compiler.target>8</maven.compiler.target> </properties> <dependencies> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-common</artifactId> </dependency> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-client</artifactId> </dependency> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-hdfs</artifactId> </dependency> <dependency> <groupId>org.apache.hbase</groupId> <artifactId>hbase-client</artifactId> </dependency> <dependency> <groupId>org.apache.hbase</groupId> <artifactId>hbase-server</artifactId> </dependency> <dependency> <groupId>junit</groupId> <artifactId>junit</artifactId> </dependency> <dependency> <groupId>org.apache.phoenix</groupId> <artifactId>phoenix-core</artifactId> </dependency> <dependency> <groupId>com.lmax</groupId> <artifactId>disruptor</artifactId> </dependency> </dependencies> <build> <plugins> <!-- compiler插件, 设定JDK版本 --> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-compiler-plugin</artifactId> <version>2.3.2</version> <configuration> <encoding>UTF-8</encoding> <source>1.8</source> <target>1.8</target> <showWarnings>true</showWarnings> </configuration> </plugin> <!-- 带依赖jar 插件--> <plugin> <artifactId>maven-assembly-plugin</artifactId> <configuration> <descriptorRefs> <descriptorRef>jar-with-dependencies</descriptorRef> </descriptorRefs> </configuration> <executions> <execution> <id>make-assembly</id> <phase>package</phase> <goals> <goal>single</goal> </goals> </execution> </executions> </plugin> </plugins> </build> </project>
电信数据
手机号,网格编号,城市编号,区县编号,停留时间,进入时间,离开时间,时间分区 D55433A437AEC8D8D3DB2BCA56E9E64392A9D93C,117210031795040,83401,8340104,301,20180503190539,20180503233517,20180503 手机号和进入时间
说明
-
最终输出结果,无论是map还是reduce,输出部分key和value的类型必须是: < ImmutableBytesWritable, KeyValue>或者< ImmutableBytesWritable, Put>。
-
最终输出部分,Value类型是KeyValue 或Put,对应的Sorter分别是KeyValueSortReducer或PutSortReducer。
-
MR例子中HFileOutputFormat2.configureIncrementalLoad(job, dianxin_bulk, regionLocator);自动对job进行配置。SimpleTotalOrderPartitioner是需要先对key进行整体排序,然后划分到每个reduce中,保证每一个reducer中的的key最小最大值区间范围,是不会有交集的。因为入库到HBase的时候,作为一个整体的Region,key是绝对有序的。
-
MR例子中最后生成HFile存储在HDFS上,输出路径下的子目录是各个列族。如果对HFile进行入库HBase,相当于move HFile到HBase的Region中,HFile子目录的列族内容没有了,但不能直接使用mv命令移动,因为直接移动不能更新HBase的元数据。
-
HFile入库到HBase通过HBase中 LoadIncrementalHFiles的doBulkLoad方法,对生成的HFile文件入库
八、HBase中rowkey的设计(重点!!面试题)
HBase的RowKey设计
HBase是三维有序存储的,通过rowkey(行键),column key(column family和qualifier)和TimeStamp(时间戳)这个三个维度可以对HBase中的数据进行快速定位。
HBase中rowkey可以唯一标识一行记录,在HBase查询的时候,有两种方式:
通过get方式,指定rowkey获取唯一一条记录
通过scan方式,设置startRow和stopRow参数进行范围匹配
全表扫描,即直接扫描整张表中所有行记录
rowkey长度原则
rowkey是一个二进制码流,可以是任意字符串,最大长度 64kb ,实际应用中一般为10-100bytes,以 byte[] 形式保存,一般设计成定长。
建议越短越好,不要超过16个字节,原因如下:
数据的持久化文件HFile中是按照KeyValue存储的,如果rowkey过长,比如超过100字节,1000w行数据,光rowkey就要占用100*1000w=10亿个字节,将近1G数据,这样会极大影响HFile的存储效率;
MemStore将缓存部分数据到内存,如果rowkey字段过长,内存的有效利用率就会降低,系统不能缓存更多的数据,这样会降低检索效率。
目前操作系统都是64位系统,内存8字节对齐,控制在16个字节,8字节的整数倍利用了操作系统的最佳特性。
rowkey散列原则
如果rowkey按照时间戳的方式递增,不要将时间放在二进制码的前面,建议将rowkey的高位作为散列字段,由程序随机生成,低位放时间字段,这样将提高数据均衡分布在每个RegionServer,以实现负载均衡的几率。如果没有散列字段,首字段直接是时间信息,所有的数据都会集中在一个RegionServer上,这样在数据检索的时候负载会集中在个别的RegionServer上,造成热点问题,会降低查询效率。
rowkey唯一原则
必须在设计上保证其唯一性,rowkey是按照字典顺序排序存储的,因此,设计rowkey的时候,要充分利用这个排序的特点,将经常读取的数据存储到一块,将最近可能会被访问的数据放到一块。
什么是热点
HBase中的行是按照rowkey的字典顺序排序的,这种设计优化了scan操作,可以将相关的行以及会被一起读取的行存取在临近位置,便于scan。然而糟糕的rowkey设计是热点的源头。 热点发生在大量的client直接访问集群的一个或极少数个节点(访问可能是读,写或者其他操作)。大量访问会使热点region所在的单个机器超出自身承受能力,引起性能下降甚至region不可用,这也会影响同一个RegionServer上的其他region,由于主机无法服务其他region的请求。 设计良好的数据访问模式以使集群被充分,均衡的利用。
为了避免写热点,设计rowkey使得不同行在同一个region,但是在更多数据情况下,数据应该被写入集群的多个region,而不是一个。
下面是一些常见的避免热点的方法以及它们的优缺点:
加盐
这里所说的加盐不是密码学中的加盐,而是在rowkey的前面增加随机数,具体就是给rowkey分配一个随机前缀以使得它和之前的rowkey的开头不同。分配的前缀种类数量应该和你想使用数据分散到不同的region的数量一致。加盐之后的rowkey就会根据随机生成的前缀分散到各个region上,以避免热点。
哈希
哈希会使同一行永远用一个前缀加盐。哈希也可以使负载分散到整个集群,但是读却是可以预测的。使用确定的哈希可以让客户端重构完整的rowkey,可以使用get操作准确获取某一个行数据
反转
第三种防止热点的方法时反转固定长度或者数字格式的rowkey。这样可以使得rowkey中经常改变的部分(最没有意义的部分)放在前面。这样可以有效的随机rowkey,但是牺牲了rowkey的有序性。
反转rowkey的例子以手机号为rowkey,可以将手机号反转后的字符串作为rowkey,这样的就避免了以手机号那样比较固定开头导致热点问题
时间戳反转
一个常见的数据处理问题是快速获取数据的最近版本,使用反转的时间戳作为rowkey的一部分对这个问题十分有用,可以用 Long.Max_Value - timestamp 追加到key的末尾,例如 [key]reverse_timestamp , [key] 的最新值可以通过scan [key]获得[key]的第一条记录,因为HBase中rowkey是有序的,第一条记录是最后录入的数据。
比如需要保存一个用户的操作记录,按照操作时间倒序排序,在设计rowkey的时候,可以这样设计
[userId反转]Long.Max_Value - timestamp,在查询用户的所有操作记录数据的时候,直接指定反转后的userId,startRow是[userId反转]000000000000,stopRow是[userId反转]Long.Max_Value - timestamp
如果需要查询某段时间的操作记录,startRow是[user反转]Long.Max_Value - 起始时间,stopRow是[userId反转]Long.Max_Value - 结束时间
其他一些建议
尽量减少行和列的大小在HBase中,value永远和它的key一起传输的。当具体的值在系统间传输时,它的rowkey,列名,时间戳也会一起传输。如果你的rowkey和列名很大,甚至可以和具体的值相比较,那么你将会遇到一些有趣的问题。HBase storefiles中的索引(有助于随机访问)最终占据了HBase分配的大量内存,因为具体的值和它的key很大。可以增加block大小使得storefiles索引再更大的时间间隔增加,或者修改表的模式以减小rowkey和列名的大小。压缩也有助于更大的索引。
列族尽可能越短越好,最好是一个字符
冗长的属性名虽然可读性好,但是更短的属性名存储在HBase中会更好
# 原数据:以时间戳_user_id作为rowkey # 时间戳高位变化不大,太连续,最终可能会导致热点问题 1638584124_user_id 1638584135_user_id 1638584146_user_id 1638584157_user_id 1638584168_user_id 1638584179_user_id # 解决方案:加盐、反转、哈希 # 加盐 # 加上随即前缀,随机的打散 # 该过程无法预测 前缀时随机的 00_1638584124_user_id 05_1638584135_user_id 03_1638584146_user_id 04_1638584157_user_id 02_1638584168_user_id 06_1638584179_user_id # 反转 # 适用于高位变化不大,低位变化大的rowkey 4214858361_user_id 5314858361_user_id 6414858361_user_id 7514858361_user_id 8614858361_user_id 9714858361_user_id # 散列 md5、sha1、sha256...... 25531D7065AE158AAB6FA53379523979_user_id 60F9A0072C0BD06C92D768DACF2DFDC3_user_id D2EFD883A6C0198DA3AF4FD8F82DEB57_user_id A9A4C265D61E0801D163927DE1299C79_user_id 3F41251355E092D7D8A50130441B58A5_user_id 5E6043C773DA4CF991B389D200B77379_user_id # 时间戳"反转" # rowkey:时间戳_user_id # rowkey是字典升序的,那么越新的记录会被排在最后面,不容易被获取到 # 需求:让最新的记录排在最前面 # 大数:9999999999 # 大数-小数 1638584124_user_id => 8361415875_user_id 1638584135_user_id => 8361415864_user_id 1638584146_user_id => 8361415853_user_id 1638584157_user_id => 8361415842_user_id 1638584168_user_id => 8361415831_user_id 1638584179_user_id => 8361415820_user_id 1638586193_user_id => 8361413806_user_id
合理设计rowkey实战(电信)
手机号,网格编号,城市编号,区县编号,停留时间,进入时间,离开时间,时间分区 D55433A437AEC8D8D3DB2BCA56E9E64392A9D93C,117210031795040,83401,8340104,301,20180503190539,20180503233517,20180503 将用户位置数据保存到hbase 查询需求 1、通过手机号查询用户最近10条位置记录 2、获取用户某一天在一个城市中的所有位置 怎么设计hbase表 1、rowkey 2、时间戳
九、二级索引
二级索引的本质就是建立各列值与行键之间的映射关系
Hbase的局限性:
HBase本身只提供基于行键和全表扫描的查询,而行键索引单一,对于多维度的查询困难。
所以我们引进一个二级索引的概念
常见的二级索引:
HBase的一级索引就是rowkey,我们只能通过rowkey进行检索。如果我们相对hbase里面列族的列列进行一些组合查询,就需要采用HBase的二级索引方案来进行多条件的查询。
-
MapReduce方案
-
ITHBASE(Indexed-Transanctional HBase)方案
-
IHBASE(Index HBase)方案
-
Hbase Coprocessor(协处理器)方案
-
Solr+hbase方案 redis+hbase 方案
-
CCIndex(complementalclustering index)方案
二级索引的种类
1、创建单列索引 2、同时创建多个单列索引 3、创建联合索引(最多同时支持3个列) 4、只根据rowkey创建索引
单表建立二级索引
1.首先disable ‘表名’ 2.然后修改表 alter 'LogTable',METHOD=>'table_att','coprocessor'=>'hdfs:///写好的Hbase协处理器(coprocessor)的jar包名|类的绝对路径名|1001' 3. enable '表名'
二级索引的设计思路
二级索引的本质就是建立各列值与行键之间的映射关系 如上图1,当要对F:C1这列建立索引时,只需要建立F:C1各列值到其对应行键的映射关系,如C11->RK1等,这样就完成了对F:C1列值的二级索引的构建,当要查询符合F:C1=C11对应的F:C2的列值时(即根据C1=C11来查询C2的值,图1青色部分) 其查询步骤如下: 1. 根据C1=C11到索引数据中查找其对应的RK,查询得到其对应的RK=RK1 2. 得到RK1后就自然能根据RK1来查询C2的值了 这是构建二级索引大概思路,其他组合查询的联合索引的建立也类似。
Mapreduce的方式创建二级索引
使用整合MapReduce的方式创建hbase索引。主要的流程如下:
1.1扫描输入表,使用hbase继承类TableMapper
1.2获取rowkey和指定字段名称和字段值
1.3创建Put实例, value=” “, rowkey=班级,column=学号
1.4使用IdentityTableReducer将数据写入索引表
案例:
1、在hbase中创建索引表 student_index
create 'student_index','info'
2、编写mapreduce代码
package com.shujia.hbaseapi.hbaseindexdemo; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.hbase.client.Mutation; import org.apache.hadoop.hbase.client.Put; import org.apache.hadoop.hbase.client.Result; import org.apache.hadoop.hbase.client.Scan; import org.apache.hadoop.hbase.io.ImmutableBytesWritable; import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil; import org.apache.hadoop.hbase.mapreduce.TableMapper; import org.apache.hadoop.hbase.mapreduce.TableReducer; import org.apache.hadoop.hbase.util.Bytes; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import java.io.IOException; /** * 编写整个mapreduce程序建立索引表 */ class IndexMapper extends TableMapper<Text, NullWritable>{ @Override protected void map(ImmutableBytesWritable key, Result value, Mapper<ImmutableBytesWritable, Result, Text, NullWritable>.Context context) throws IOException, InterruptedException { String id = Bytes.toString(key.get()); String clazz = Bytes.toString(value.getValue("info".getBytes(), "clazz".getBytes())); String key1 = id+"_"+clazz; context.write(new Text(key1),NullWritable.get()); } } /** * * reduce端获取map端传过来的key */ class IndexReduce extends TableReducer<Text,NullWritable,NullWritable>{ @Override protected void reduce(Text key, Iterable<NullWritable> values, Reducer<Text, NullWritable, NullWritable, Mutation>.Context context) throws IOException, InterruptedException { String[] strings = key.toString().split("_"); String id = strings[0]; String clazz = strings[1]; //索引表也是属于hbase的表,需要使用put实例添加数据 Put put = new Put(clazz.getBytes()); put.add("info".getBytes(),id.getBytes(),"".getBytes()); context.write(NullWritable.get(),put); } } public class HbaseIndex { public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException { Configuration conf = new Configuration(); conf.set("hbase.zookeeper.quorum", "master:2181,node1:2181,node2:2181"); Job job = Job.getInstance(conf); job.setJobName("建立学生索引表"); job.setJarByClass(HbaseIndex.class); Scan scan = new Scan(); scan.addFamily("info".getBytes()); //指定对哪张表建立索引,以及指定需要建索引的列所属的列簇 TableMapReduceUtil.initTableMapperJob("students",scan,IndexMapper.class,Text.class,NullWritable.class,job); TableMapReduceUtil.initTableReducerJob("student_index",IndexReduce.class,job); job.waitForCompletion(true); } }
3、打成jar包上传到hadoop中运行
hadoop jar had-hbase-demo-1.0-SNAPSHOT-jar-with-dependencies.jar com.shujia.hbaseapi.hbaseindexdemo.HbaseIndex
4、编写查询代码,测试结果(先查询索引表,在查数据)
package com.shujia.hbaseapi.hbaseindexdemo; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.hbase.Cell; import org.apache.hadoop.hbase.CellUtil; import org.apache.hadoop.hbase.client.*; import org.apache.hadoop.hbase.filter.CompareFilter; import org.apache.hadoop.hbase.filter.SingleColumnValueFilter; import org.apache.hadoop.hbase.filter.SubstringComparator; import org.apache.hadoop.hbase.util.Bytes; import org.junit.After; import org.junit.Before; import org.junit.Test; import java.io.IOException; import java.util.ArrayList; import java.util.List; public class HbaseIndexToStudents { private HConnection conn; private HBaseAdmin hAdmin; @Before public void connect() { try { //1、获取Hadoop的相关配置环境 Configuration conf = new Configuration(); //2、获取zookeeper的配置 conf.set("hbase.zookeeper.quorum", "master:2181,node1:2181,node2:2181"); //获取与Hbase的连接,这个连接是将来可以用户获取hbase表的 conn = HConnectionManager.createConnection(conf); //将来我们要对表做DDL相关操作,而对表的操作在hbase架构中是有HMaster hAdmin = new HBaseAdmin(conf); System.out.println("建立连接成功:" + conn + ", HMaster获取成功:" + hAdmin); } catch (IOException e) { e.printStackTrace(); } } /** * 通过索引表进行查询数据 * <p> * 需求:获取理科二班所有的学生信息,不适用过滤器,使用索引表查询 */ @Test public void scanData() { try { long start = System.currentTimeMillis(); //创建一个集合存放查询到的学号 ArrayList<Get> gets = new ArrayList<>(); //获取到索引表 HTableInterface student_index = conn.getTable("student_index"); //创建Get实例 Get get = new Get("理科二班".getBytes()); Result result = student_index.get(get); List<Cell> cells = result.listCells(); for (Cell cell : cells) { //每一个单元格的列名 byte[] bytes = CellUtil.cloneQualifier(cell); String id = Bytes.toString(bytes); Get get1 = new Get(id.getBytes()); //将学号添加到集合中 gets.add(get1); } //获取真正的学生数据表 students HTableInterface students = conn.getTable("students"); Result[] results = students.get(gets); for (Result result1 : results) { String id = Bytes.toString(result1.getRow()); String name = Bytes.toString(result1.getValue("info".getBytes(), "name".getBytes())); String age = Bytes.toString(result1.getValue("info".getBytes(), "age".getBytes())); String gender = Bytes.toString(result1.getValue("info".getBytes(), "gender".getBytes())); String clazz = Bytes.toString(result1.getValue("info".getBytes(), "clazz".getBytes())); System.out.println("学号:" + id + ", 姓名:" + name + ", 年龄:" + age + ", 性别:" + gender + ", 班级:" + clazz); } long endtime = System.currentTimeMillis(); System.out.println("========================================="); System.out.println((endtime - start) + "毫秒"); } catch (IOException e) { e.printStackTrace(); } } @Test public void getData() { try { long start = System.currentTimeMillis(); //获取真正的学生数据表 students HTableInterface students = conn.getTable("students"); Scan scan = new Scan(); SubstringComparator substringComparator = new SubstringComparator("理科二班"); SingleColumnValueFilter singleColumnValueFilter = new SingleColumnValueFilter("info".getBytes(), "clazz".getBytes(), CompareFilter.CompareOp.EQUAL, substringComparator); scan.setFilter(singleColumnValueFilter); ResultScanner scanner = students.getScanner(scan); Result rs = null; while ((rs = scanner.next()) != null) { String id = Bytes.toString(rs.getRow()); String name = Bytes.toString(rs.getValue("info".getBytes(), "name".getBytes())); String age = Bytes.toString(rs.getValue("info".getBytes(), "age".getBytes())); String gender = Bytes.toString(rs.getValue("info".getBytes(), "gender".getBytes())); String clazz = Bytes.toString(rs.getValue("info".getBytes(), "clazz".getBytes())); System.out.println("学号:" + id + ", 姓名:" + name + ", 年龄:" + age + ", 性别:" + gender + ", 班级:" + clazz); } long endtime = System.currentTimeMillis(); System.out.println("========================================="); System.out.println((endtime - start) + "毫秒"); } catch (IOException e) { e.printStackTrace(); } } @After public void close() { if (conn != null) { try { conn.close(); } catch (IOException e) { e.printStackTrace(); } System.out.println("conn连接已经关闭....."); } if (hAdmin != null) { try { hAdmin.close(); } catch (IOException e) { e.printStackTrace(); } System.out.println("HMaster已经关闭......"); } } }
十、Phoenix二级索引
对于Hbase,如果想精确定位到某行记录,唯一的办法就是通过rowkey查询。如果不通过rowkey查找数据,就必须逐行比较每一行的值,对于较大的表,全表扫描的代价是不可接受的。
1、开启索引支持
# 关闭hbase集群 stop-hbase.sh # 在/usr/local/soft/hbase-1.4.6/conf/hbase-site.xml中增加如下配置 <property> <name>hbase.regionserver.wal.codec</name> <value>org.apache.hadoop.hbase.regionserver.wal.IndexedWALEditCodec</value> </property> <property> <name>hbase.rpc.timeout</name> <value>60000000</value> </property> <property> <name>hbase.client.scanner.timeout.period</name> <value>60000000</value> </property> <property> <name>phoenix.query.timeoutMs</name> <value>60000000</value> </property> # 同步到所有节点 scp hbase-site.xml node1:`pwd` scp hbase-site.xml node2:`pwd` # 修改phoenix目录下的bin目录中的hbase-site.xml <property> <name>hbase.rpc.timeout</name> <value>60000000</value> </property> <property> <name>hbase.client.scanner.timeout.period</name> <value>60000000</value> </property> <property> <name>phoenix.query.timeoutMs</name> <value>60000000</value> </property> # 启动hbase start-hbase.sh # 重新进入phoenix客户端 sqlline.py master,node1,node2
2、创建索引
2.1、全局索引
全局索引适合读多写少的场景。如果使用全局索引,读数据基本不损耗性能,所有的性能损耗都来源于写数据。数据表的添加、删除和修改都会更新相关的索引表(数据删除了,索引表中的数据也会删除;数据增加了,索引表的数据也会增加)
注意: 对于全局索引在默认情况下,在查询语句中检索的列如果不在索引表中,Phoenix不会使用索引表将,除非使用hint。
手机号 进入网格的时间 离开网格的时间 区县编码 经度 纬度 基站标识 网格编号 业务类型 # 创建DIANXIN.sql CREATE TABLE IF NOT EXISTS DIANXIN ( mdn VARCHAR , start_date VARCHAR , end_date VARCHAR , county VARCHAR, x DOUBLE , y DOUBLE, bsid VARCHAR, grid_id VARCHAR, biz_type VARCHAR, event_type VARCHAR , data_source VARCHAR , CONSTRAINT PK PRIMARY KEY (mdn,start_date) ) column_encoded_bytes=0; # 上传数据DIANXIN.csv # 导入数据 psql.py master,node1,node2 DIANXIN.sql DIANXIN.csv # 创建全局索引 CREATE INDEX DIANXIN_INDEX ON DIANXIN ( end_date ); # 查询数据 ( 索引未生效) select * from DIANXIN where end_date = '20180503154014'; # 强制使用索引 (索引生效) hint select /*+ INDEX(DIANXIN DIANXIN_INDEX) */ * from DIANXIN where end_date = '20180503154014'; select /*+ INDEX(DIANXIN DIANXIN_INDEX) */ * from DIANXIN where end_date = '20180503154014' and start_date = '20180503154614'; # 取索引列,(索引生效) select end_date from DIANXIN where end_date = '20180503154014'; # 创建多列索引 CREATE INDEX DIANXIN_INDEX1 ON DIANXIN ( end_date,COUNTY ); # 多条件查询 (索引生效) select end_date,MDN,COUNTY from DIANXIN where end_date = '20180503154014' and COUNTY = '8340104'; # 查询所有列 (索引未生效) select * from DIANXIN where end_date = '20180503154014' and COUNTY = '8340104'; # 查询所有列 (索引生效) select /*+ INDEX(DIANXIN DIANXIN_INDEX1) */ * from DIANXIN where end_date = '20180503154014' and COUNTY = '8340104'; # 单条件 (索引未生效) select end_date from DIANXIN where COUNTY = '8340103'; # 单条件 (索引生效) end_date 在前 select COUNTY from DIANXIN where end_date = '20180503154014'; # 删除索引 drop index DIANXIN_INDEX on DIANXIN;
2.2、本地索引
本地索引适合写多读少的场景,或者存储空间有限的场景。和全局索引一样,Phoenix也会在查询的时候自动选择是否使用本地索引。本地索引因为索引数据和原数据存储在同一台机器上,避免网络数据传输的开销,所以更适合写多的场景。由于无法提前确定数据在哪个Region上,所以在读数据的时候,需要检查每个Region上的数据从而带来一些性能损耗。
注意:对于本地索引,查询中无论是否指定hint或者是查询的列是否都在索引表中,都会使用索引表。
# 创建本地索引 CREATE LOCAL INDEX DIANXIN_LOCAL_IDEX ON DIANXIN(grid_id); # 索引生效 select grid_id from dianxin where grid_id='117285031820040'; # 索引生效 select * from dianxin where grid_id='117285031820040';
2.3、覆盖索引
覆盖索引是把原数据存储在索引数据表中,这样在查询时不需要再去HBase的原表获取数据就,直接返回查询结果。
注意:查询是 select 的列和 where 的列都需要在索引中出现。
# 创建覆盖索引
CREATE INDEX DIANXIN_INDEX_COVER ON DIANXIN ( x,y ) INCLUDE ( county );
# 查询所有列 (索引未生效)
select * from DIANXIN where x=117.288 and y =31.822;
# 强制使用索引 (索引生效)
select /*+ INDEX(DIANXIN DIANXIN_INDEX_COVER) */ * from DIANXIN where x=117.288 and y =31.822;
# 查询索引中的列 (索引生效) mdn是DIANXIN表的RowKey中的一部分
select x,y,county from DIANXIN where x=117.288 and y =31.822;
select mdn,x,y,county from DIANXIN where x=117.288 and y =31.822;
# 查询条件必须放在索引中 select 中的列可以放在INCLUDE (将数据保存在索引中)
select /*+ INDEX(DIANXIN DIANXIN_INDEX_COVER) */ x,y,count(*) from DIANXIN group by x,y;
# 导入依赖
<dependency>
<groupId>org.apache.phoenix</groupId>
<artifactId>phoenix-core</artifactId>
<version>4.15.0-HBase-1.4</version>
</dependency>
<dependency>
<groupId>com.lmax</groupId>
<artifactId>disruptor</artifactId>
<version>3.4.2</version>
</dependency>
Connection conn = DriverManager.getConnection("jdbc:phoenix:master,node1,node2:2181");
PreparedStatement ps = conn.prepareStatement("select /*+ INDEX(DIANXIN DIANXIN_INDEX) */ * from DIANXIN where end_date=?");
ps.setString(1, "20180503212649");
ResultSet rs = ps.executeQuery();
while (rs.next()) {
String mdn = rs.getString("mdn");
String start_date = rs.getString("start_date");
String end_date = rs.getString("end_date");
String x = rs.getString("x");
String y = rs.getString("y");
String county = rs.getString("county");
System.out.println(mdn + "\t" + start_date + "\t" + end_date + "\t" + x + "\t" + y + "\t" + county);
}
ps.close();
conn.close();