同余式的基本性质
1.自反性:\(a\equiv a(\bmod m)\)
2.对称性:若 \(a\equiv b(\bmod m)\) ,则 \(b\equiv a(\bmod m)\)
3.传递性:若 \(a\equiv b(\bmod m)\) ,\(b\equiv c(\bmod m)\),则 \(a\equiv c(\bmod m)\)
4.消去性:$ac\equiv bc(\bmod p ) \to a \equiv b(\bmod \frac{p}{gcd(c,p)}) $
5.\(a\equiv b(\bmod cd \to a\equiv b(\bmod d)\)
6.\((a\equiv b(\bmod d),a\equiv b(\bmod c) \to a\equiv b(\bmod lcm(c,d))\)
7. 若 \(a\equiv b(\bmod p)\),则对任意 \(c\)有\((a+c)\equiv (b+c)(\bmod p)\)
8. 若 \(a\equiv b(\bmod p)\),则对任意 \(c\)有\((a\times c)\equiv (b\times c)(\bmod p)\)
9. 若 \(a\equiv b(\bmod p)\),则对任意 \(c\)有\((a^c)\equiv (b^c)(\bmod p)\)
10. 若 \(a\equiv b(\bmod p)\),则 \(c\)有\((a+c)\equiv (b+d)(\bmod p)\)、\((a-c)\equiv (b-d)(\bmod p)\) 和 \((a\times c)\equiv (b\times d)(\bmod p)\)